Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2034
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKurtulmaz, Ekim-
dc.contributor.authorAziz, R.-
dc.contributor.authorUçar, U.-
dc.contributor.authorÖzyer, Tansel-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2019-07-10T14:42:47Z
dc.date.available2019-07-10T14:42:47Z
dc.date.issued2018-07
dc.identifier.citationKurtulmaz, E., Aziz, R., Uçar, U., Özyer, T., & Alhajj, R. (2018, May). Periodicity detection in turkish stock market. In 2018 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.en_US
dc.identifier.isbn978-153861501-0
dc.identifier.urihttps://ieeexplore.ieee.org/document/8404289-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2034-
dc.description26th IEEE Signal Processing and Communications Applications Conference (2018 : Izmir; Turkey)
dc.description.abstractThis paper provides a periodicity detection sample of the Turkish Stock Market using data mining concepts and techniques. The extraction of periodic patterns from the time series databases is a captivating area in data mining such that it has impulse to forecast and predict the behavior of time series data in the future. Given data from on a multilevel space from different industries, we find repeating trends and frequent patterns using correlation analysis and fourier spectral evaluation. Using the projection of transformed time-series data of the feature space, we indicate long-term movements, cyclic moves, seasonal variations, and random moves. Finally, we will present a simple trend analysis for time-series forecasting the periodicity. © 2018 IEEE.en_US
dc.description.abstractBu makalede, veri madenciligi teknikleri kullanılarak Türk Borsası’nda işlem gören hisse senetlerinin periyodiklik analizi yapılmıştır. Zaman serisi verilerindeki periyodik örüntülerin incelenmesi ilgi gören bir veri madenciligi problemidir, ve gelecek tahmini yapmak için kullanılabilir. Farklı sektörlerden hisse senetlerinin incelendigi bu çalışmada, tekrar eden yönelimler ve sık karşılaşılan örüntüler, ilinti analizi ve Fourier Dönüşümü yöntemleriyle tespit edilmiştir. Zaman serisinin farklı boyutlara dönüştürülmesiyle elde edilen veri, uzun süreli hareketleri, dönemsel hareketleri, periyodik hareketleri ve rasgele hareketleri saptamamızı saglamıştır. Son olarak ise, periyodiklik bilgisi kullanılarak basit bir yönelim tahmini yapılmıştır.en_US
dc.description.sponsorshipAselsan,et al.,Huawei,IEEE Signal Processing Society,IEEE Turkey Section,Netas
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof26th IEEE Signal Processing and Communications Applications Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTime seriesen_US
dc.subjectData miningen_US
dc.subjectseries classificationen_US
dc.subjectPeriyodiklik Kestirimitr_TR
dc.subjectVeri Madenciliğitr_TR
dc.subjectÖrüntü Tanımatr_TR
dc.titlePeriodicity Detection in Turkish Stock Marketen_US
dc.title.alternativeTürk Borsasında Periyodiklik Kestirimien_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage1
dc.identifier.endpage4
dc.identifier.scopus2-s2.0-85050794512en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.doi10.1109/SIU.2018.8404289-
dc.authorscopusid8914139000-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

72
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.