Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2036
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDhaliwal, S.-
dc.contributor.authorVan, N. N.-
dc.contributor.authorDhaliwal, M.-
dc.contributor.authorRokne J.-
dc.contributor.authorAlhajj, Reda-
dc.contributor.authorÖzyer, Tansel-
dc.date.accessioned2019-07-10T14:42:47Z
dc.date.available2019-07-10T14:42:47Z
dc.date.issued2017-05-17
dc.identifier.citationDhaliwal, S., Van, N. N., Dhaliwal, M., Rokne, J., Alhajj, R., & Özyer, T. (2017, May). Integrating SOM and fuzzy k-means clustering for customer classification in personalized recommendation system for non-text based transactional data. In 2017 8th International Conference on Information Technology (ICIT) (pp. 901-908). IEEE.en_US
dc.identifier.isbn978-150906332-1
dc.identifier.urihttps://ieeexplore.ieee.org/document/8079966-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2036-
dc.description8th International Conference on Information Technology (2017 : Amman; Jordan)
dc.description.abstractThe world of e-commerce is reshaping marketing strategies based on the analysis of e-commerce data. Huge amounts of data are being collecting and can be analyzed for some discoveries that may be used as guidance for people sharing same interests but lacking experience. Indeed, recommendation systems are becoming an essential business strategy tool from just a novelty. Many large e-commerce web sites are already encapsulating recommendation systems to provide a customer friendly environment by helping customers in their decision-making process. A recommendation system learns from a customer behavior patterns and recommend the most valuable from available alternative choices. In this paper, we developed a two-stage algorithm using self-organizing map (SOM) and fuzzy k-means with an improved distance function to classify users into clusters. This will lead to have in the same cluster users who mostly share common interests. Results from the combination of SOM and fuzzy K-means revealed better accuracy in identifying user related classes or clusters. We validated our results using various datasets to check the accuracy of the employed clustering approach. The generated groups of users form the domain for transactional datasets to find most valuable products for customers. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofICIT 2017 - 8th International Conference on Information Technology, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRecommender systemsen_US
dc.subjectFiltrationen_US
dc.subjectrating matrixen_US
dc.titleIntegrating Som and Fuzzy K-Means Clustering for Customer Classification in Personalized Recommendation System for Non-Text Based Transactional Dataen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage901
dc.identifier.endpage908
dc.identifier.scopus2-s2.0-85040000852en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.doi10.1109/ICITECH.2017.8079966-
dc.authorscopusid8914139000-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Dec 21, 2024

Page view(s)

68
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.