Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/2306
Title: | Veri Madenciliği Tekniklerini Kullanarak Sosyal Ağ Tabanlı Sınıflandırıcı Geliştirilmesi | Other Titles: | Development of a Classifier Based on Social Network Analysis Using Data Mining Techniques | Authors: | Koçak, Yunuscan | Advisors: | Özyer, Tansel | Keywords: | Social network analysis Frequent itemsets Data mining Machine learning Veri madenciliği Makine öğrenmesi Sosyal ağ analizi Sık öğe kümesi |
Publisher: | TOBB University of Economics and Technology,Graduate School of Engineering and Science TOBB ETÜ Fen Bilimleri Enstitüsü |
Source: | Koçak, Y. (2016). Veri madenciliği tekniklerini kullanarak sosyal ağ tabanlı sınıflandırıcı geliştirilmesi. Ankara: TOBB ETÜ Fen Bilimleri Enstitüsü. [Yayınlanmamış yüksek lisans tezi] | Abstract: | AIDS is a deadly disease that is caused by HIV. HIV attacks the immune system of the body and uses white blood cells to make replicates of itself and spreads them to the everywhere in the body. In the life cycle of disease HIV-1 protease enzyme is in charge of cleaving an amino acid octamer into peptides which are used to create proteins by virus. It is very critical to induce a model and predict cleavage of HIV-1 protease on octamers for developing successful medicine. In this work, a novel classifier is proposed which can also be used in different domains. This classifier analyzes a social network that is created by using data mining techniques to predict the class values of new instances. This work consists of two main parts, in the first part evaluation process of frequent itemsets as features is discussed. In the second part, our approach on developing the classifier and the working mechanism of classifier is explained. Our results are compared with the methodology that is proposed on the technical literature and with other machine learning methods and results are promising. AIDS HIV'in sebep olduğu ölümcül bir hastalıktır. Bağışıklık sistemine saldıran bu hastalık beyaz kan hücreleri üstünde çoğalarak bütün vücuda yayılmaktadır. Hastalığın yaşam döngüsünde HIV-1 protaz enzimi tarafından kırılan amino asit sekizlileri virüs tarafından kendi proteinlerini oluşturmakta kullanılmaktadır. Bu doğrultuda hangi sekizlilerin virüs tarafından kırılabileceğini tahmin etmek yenilikçi ve başarılı ilaçlar geliştirilmesi açısından önem arz etmektedir. Bu çalışmada farklı alanlarda da uygulanabilecek yenilikçi bir sınıflandırıcı önerilmektedir. Bu sınıflandırıcı veri madenciliği tekniklerini kullanarak oluşturulan bir sosyal ağ üzerinde analizler yaparak yeni örneklerin sınıflarını tahmin etmekte kullanılmaktadır. İki ana kısımdan oluşan çalışmamızda ilk olarak sık öğe kümelerinin öznitelik olarak değerlendirilme süreci anlatılmış, ikinci kısımda ise bu öznitelikleri kullanan sınıflandırıcıyı geliştirirken kullandığımız yaklaşım ve sınıflandırıcının çalışma mekaniği açıklanmıştır. Sonuçlarımız literatürde önerilen yöntem ve diğer makine öğrenme yöntemleri ile karşılaştırılmıştır ve bu sonuçlar ümit vericidir. |
URI: | https://hdl.handle.net/20.500.11851/2306 https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp |
Appears in Collections: | Bilgisayar Mühendisliği Yüksek Lisans Tezleri / Computer Engineering Master Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
436163.pdf | 1.43 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
98
checked on Dec 23, 2024
Download(s)
34
checked on Dec 23, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.