Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2360
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGirici, Tolga-
dc.contributor.authorMaral, Hakan-
dc.date.accessioned2019-12-25T10:51:04Z-
dc.date.available2019-12-25T10:51:04Z-
dc.date.issued2018
dc.identifier.citationMaral, H. (2018). Uzun hat gözetleme uygulamaları için dağıtık akustik algılama sistem çözümü : Sinyal modelleme, hedef tespiti ve sınıflandırma teknikleri. Ankara: TOBB ETÜ Fen Bilimleri Enstitüsü. [Yayınlanmamış yüksek lisans tezi]en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2360-
dc.identifier.urihttps://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp-
dc.description.abstractFaz-OTDR tekniğine dayanan fiber optik dağıtık akustik algılama sistemi, petrol ve gaz boru hatları, elektrik hatları, demiryolu hatları, orta ila büyük ölçekli tesislerin sınırları gibi uzun doğrusal hatları izlemek için ortam koşullarından etkilenmeyen ve maliyet etkin bir çözüm sunar. Fiber optik dağıtık akustik algılama (DAS), teleko-münikasyon sınıfı fiber optik kablolarını algılama ve iletim ortamı olarak kullanabi-lir. Sönümleme oranı, faz-OTDR bazlı dağıtık akustik algılama sistemlerinin tespit performansını doğrudan etkileyen ve doğal olarak ortaya çıkan sınırlayıcı bir faktör-dür. Tezin ilk kısmında, Rayleigh saçılımının model bazlı analizinden faydalanarak sönümleme oranının değişken sinyal edinim senaryoları ve sistem parametrelerinin alınan sinyaller üzerindeki etkilerini incelemek amaçlanmış ve MATLAB ortamında bu amaca uygun bir simülasyon yazılmıştır. Simülasyonda uygulanan sinyal edinim senaryoları, tespit edilecek olan hedef aktivite kaynağının çevresinde dağınık aktivite kaynaklarının etkileri, sürekli dalga lazer kaynağındaki merkez frekans kayması, değişen fiber optik kablo uzunlukları ve değişen ADC bit çözünürlükleri gibi dağıtık akustik algılama sistemlerinde tipik olarak gözlemlenen durumları temsil etmek üze-re oluşturulmuştur. Sonuçlar, yetersiz bir sönümleme oranının yüksek optik gürültü-ye sebep olarak sistem parametrelerini geliştirme çabalarının etkilerini önemli bir şekilde kısıtladığını göstermektedir. Tezin ikinci kısmında ise fiber optik tabanlı da-ğıtık akustik algılama sistemlerinde gerçek zamanlı hedef tespiti için uyarlamalı güç eşikleme yaklaşımı ve 50 kilometre uzunluğundaki doğrusal bir hattın gözlemlenme-si amacıyla geliştirilen dağıtık akustik algılama sisteminde kullanılan gerçek zamanlı hedef teşhis yaklaşımı açıklanmıştır. Tespit yaklaşımı için, optik sistemin iç dinamik-lerine ve optik kablonun yakınlarında yapılan fiziksel aktivitelere bağlı olarak ölçü-len sinyalin genliği değiştiğinden ve genel kabul görmüş bir sinyal istatistiksel mode-li olmadığından, sinyal istatistikleri toplanan verilerden doğrudan oluşturulmuştur. Toplanan verilerin sadece gürültü veya gürültülü aktivite içerdiği önceden bilineme-diği için iki aşamalı istatistiksel modelleme yaklaşımı uygulanarak güç eşik değeri belirlenmiştir. Bunun için birinci ve ikinci dereceden Gaussian karışım modelleri sırasıyla denenerek en uygun olanı güç eşik değerinin hesaplanması için kullanılmış-tır. Ayrıca, güç eşik değerinin güncellenme yöntemi açıklanmış ve algoritma çalışma zamanları analiz edilmiştir. Son kısımda, hedef teşhisi için, evrişimsel sinir ağları temelli derin öğrenme yaklaşımı kullanılmıştır. Farklı yapıda ve karmaşıklıktaki sinir ağlarının teşhis performansları ve çalışma süreleri ölçülmüştür. Hedef tespit perfor-mansını azaltmadan, tespit edilen tüm hedeflerin teşhis edilebilmesi için önerilen yaklaşım açıklanmıştır. Bu yaklaşımın uygulanabilmesi için kullanılabilecek ağ yapı-sının müsaade edilebildiği en yüksek çalışma süresi, en kötü senaryo durumunda analiz edilmiştir. Bu sayede, sistemde kullanılabilecek en uygun ağ yapısı seçiminin hem başarım hem de gerçek zamanlı uygulanabilirlik kriterlerine göre yapılabilmesi sağlanmıştır.tr_TR
dc.description.abstractThe fiber-optic distributed acoustic sensing system based on the Phase-OTDR technique provides a cost-effective solution for monitoring long linear assets such as oil and gas pipelines, power lines, railway lines, boundaries of medium to large-scale facilities. Fiber optic distributed acoustic detection (DAS) can use telecommunications class fiber optic cables as detection and transmission media. Extinction ratio is an inherent limiting factor that has a direct effect on the detection performance of phase-OTDR based distributed acoustics sensing systems. In the first part of the thesis, a model based analysis of Rayleigh scattering is presented to simulate the effects of extinction ratio on the received signal under varying signal acquisition scenarios and system parameters. These signal acquisition scenarios are constructed to represent typically observed cases such as multiple vibration sources cluttered around the target vibration source to be detected, continuous wave light sources with center frequency drift, varying fiber optic cable lengths and varying ADC bit resolutions. Results show that an insufficient extinction ratio can result in high optical noise floor and effectively hide the effects of elaborate system improvement efforts. The second part of the thesis adopts two main approaches: an adaptive power thresholding approach for real time threat detection on fiber optic based distributed acoustic sensing systems, and a real time threat classification approach to be used in a distributed acoustic sensing system that is developed for monitoring linear assets with a maximum length of 50 kms is explained. Due to the lack of an approved statistical signal model, and the changes on measured signal magnitude, which result from the internal mechanism of the optical system and physical activities that occur near the fiber optic cable, signal statistics are directly generated from the captured data. Since it is not known whether the captured data contain only noise or noisy activity data, power threshold is computed by applying two step statistical model approach. In order to construct these statistical models, first and second order Gaussian mixture models are tested and the most appropriate is used for computing power threshold. Finally, the update mechanism of power thresholding is explained and the execution time of the algorithm is analyzed. A deep learning approach based on The Convolutional Neural Network (CNN) is adopted for threat classification. Accuracy of the classification and durations of execution for neural networks with varying architectures and complexity are computed. A proposed approach for classifying all the detected threats without decreasing the detection accuracy is introduced. The maximum allowable execution time for the network structure that is appropriate for the proposed approach is analyzed for the worst case scenario. Hence, the most appropriate network architecture selection can be performed based on classification accuracy and also applicability in real-time criterion.en_US
dc.language.isotren_US
dc.publisherTOBB University of Economics and Technology,Graduate School of Engineering and Scienceen_US
dc.publisherTOBB ETÜ Fen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPhase-OTDR Extinction ratioen_US
dc.subjectDistributed acoustic sensingen_US
dc.subjectDetection Simulationen_US
dc.subjectAdaptive thresholdingen_US
dc.subjectThreat detectionen_US
dc.subjectReal-time processingen_US
dc.subjectDeep learningen_US
dc.subjectConvolutional neural networksen_US
dc.subjectThreat classificationen_US
dc.subjectFaz-OTDRtr_TR
dc.subjectSönüm oranıtr_TR
dc.subjectDağıtık akustik algılamatr_TR
dc.subjectTespittr_TR
dc.subjectSimülasyontr_TR
dc.subjectUyarlamalı eşiklemetr_TR
dc.subjectTehdit tespittr_TR
dc.subjectDerin öğrenmetr_TR
dc.subjectEvrişimsel sinir ağlarıtr_TR
dc.subjectCNNtr_TR
dc.subjectTehdit tespittr_TR
dc.subjectTehdit teşhistr_TR
dc.subjectGerçek zamanlı çalışmatr_TR
dc.titleUzun hat gözetleme uygulamaları için dağıtık akustik algılama sistem çözümü : Sinyal modelleme, hedef tespiti ve sınıflandırma tekniklerien_US
dc.title.alternativeDistributed acoustic sensing system for linear asset monitoring: Signal modeling, threat detection and classificationen_US
dc.typeMaster Thesisen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Elektrik ve Elektronik Mühendisliği Ana Bilim Dalıtr_TR
dc.relation.publicationcategoryTezen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeMaster Thesis-
item.languageiso639-1tr-
item.grantfulltextopen-
Appears in Collections:Elektrik-Elektronik Mühendisliği Yüksek Lisans Tezleri / Electrical & Electronics Engineering Master Theses
Files in This Item:
File Description SizeFormat 
541439.pdf5.45 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

124
checked on Nov 4, 2024

Download(s)

114
checked on Nov 4, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.