Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/2667
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Maratkhan, A. | - |
dc.contributor.author | İlyassov, I. | - |
dc.contributor.author | Aitzhanov, M. | - |
dc.contributor.author | Demirci, Muhammed Fatih | - |
dc.contributor.author | Özbayoğlu, Ahmet Murat | - |
dc.date.accessioned | 2019-12-25T14:02:00Z | |
dc.date.available | 2019-12-25T14:02:00Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Maratkhan, A., Ilyassov, I., Aitzhanov, M., Demirci, M. F., and Ozbayoglu, M. (2019, June). Financial Forecasting using Deep Learning with an Optimized Trading Strategy. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 838-844). IEEE. | en_US |
dc.identifier.isbn | 9.78173E+12 | |
dc.identifier.uri | https://ieeexplore.ieee.org/document/8789932 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/2667 | - |
dc.description | 2019 IEEE Congress on Evolutionary Computation ( 2019: Wellington; New Zealand) | |
dc.description.abstract | Financial forecasting using computational intelligence nowadays remains a hot topic. Recent improvements in deep neural networks allow us to predict financial market behavior. In our work we first implement a novel approach of [1], which converts financial time-series data to 2-D images and then feeds the generated images to a convolutional neural network as an input. We then hypothesize that the performance of the model can be improved using different techniques. Specifically, in our work, we improve the computational and financial performance of the previous approach by 1) fine-tuning the neural network hyperparameters, 2) creating images with 5 channels corresponding to indicator clusters, 3) improving financial evaluation using take profit and stop loss techniques, 4) evolutionary optimized parameters for trading strategy. The results of this study show that the above-mentioned strategies improve the model considerably. We conclude with future work that can be done in order to further improve the computational and financial performance of the model. © 2019 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Financial forecasting | en_US |
dc.subject | time-series classification | en_US |
dc.subject | deep learning | en_US |
dc.subject | convolutional neural networks | en_US |
dc.subject | cuckoo search | en_US |
dc.title | Financial Forecasting Using Deep Learning With an Optimized Trading Strategy | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 838 | |
dc.identifier.endpage | 844 | |
dc.identifier.scopus | 2-s2.0-85071294580 | en_US |
dc.institutionauthor | Demirci, Muhammed Fatih | - |
dc.institutionauthor | Özbayoğlu, Ahmet Murat | - |
dc.identifier.doi | 10.1109/CEC.2019.8789932 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
2
checked on Dec 21, 2024
Page view(s)
98
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.