Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2751
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArın, Efe-
dc.contributor.authorYetik, İmam Şamil-
dc.date.accessioned2019-12-25T14:03:35Z
dc.date.available2019-12-25T14:03:35Z
dc.date.issued2019
dc.identifier.citationArın, E., and şamil Yetik, İ. (2019, April). Noise Reduction Filter Optimization For Prostate Cancer Localization. In 2019 27th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.en_US
dc.identifier.isbn978-172811904-5
dc.identifier.urihttps://ieeexplore.ieee.org/document/8806426-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2751-
dc.description.abstractMultispectral Magnetic Resonance Imaging (MRI) images are commonly used in prostate cancer diagnosis. However noise in raw data makes it difficult to process images. Therefore MR images must be filtered as a pre-processing step prior to automated localization. In the literature, filters and their parameters are generally selected depending on experiences in the field. In this research, a method, not found in the literature, is proposed such that the system can choose optimal filter parameters to maximize cancer localization. In order to use on KEL, KEP, and IAUC 30, 60, 90 parameters, obtained from multispectral MR images, 3 different filters (wiener filter, total variance filter and wavelet thresholding) and a parameter for each filtering is chosen to maximize localization performance. Linear discriminant analysis is used for localization and observed that optimally selecting the filtering method and its parameter improves prostate cancer localization performance. © 2019 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectProstatic neoplasms en_US
dc.subject prostate en_US
dc.subject endorectal coilen_US
dc.titleNoise Reduction Filter Optimization for Prostate Cancer Localizationen_US
dc.title.alternativeProstat Kanseri Lokalizasyonu için Gürültü Temizleme Süzgeçleri Optimizasyonuen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.authorid0000-0002-7330-4692-
dc.identifier.wosWOS:000518994300111en_US
dc.identifier.scopus2-s2.0-85071990102en_US
dc.institutionauthorYetik, İmam Şamil-
dc.identifier.doi 10.1109/SIU.2019.8806426-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Dec 21, 2024

Page view(s)

44
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.