Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/2840
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Özgül, Ozan Fırat | - |
dc.contributor.author | Çakır, Mehmet Ulaş | - |
dc.contributor.author | Tan, Mehmet | - |
dc.contributor.author | Amasyalı, Mehmet Fatih | - |
dc.contributor.author | Hayvacı, Harun Taha | - |
dc.date.accessioned | 2019-12-25T14:03:42Z | - |
dc.date.available | 2019-12-25T14:03:42Z | - |
dc.date.issued | 2018 | |
dc.identifier.citation | Ozgul, O. F., Cakir, M. U., Tan, M., Amasyali, M. F., and Hayvaci, H. T. (2018, September). A Fully Unsupervised Framework for Scoring Driving Style. In 2018 International Conference on Intelligent Systems (IS) (pp. 228-234). IEEE. | en_US |
dc.identifier.isbn | 978-1-5386-7097-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/2840 | - |
dc.identifier.uri | https://ieeexplore.ieee.org/document/8710574 | - |
dc.description.abstract | Rating driving performance is a challenging topic. It attracts professionals from a variety of domains such as automotive industry and insurance companies. In this work, we propose a fully unsupervised driver scoring framework using a minimalistic dataset which is composed of Global Positioning System (GPS) and Controller Area Network (CAN Bus) data. Based on the natural expectation that good driving patterns should depend on the road type and traffic flow intensity, our framework attempts to assign a probabilistic score in proportion to the occurrence probability of a certain driving style given the road geometry and traffic conditions. Quantization of these random variables through clustering methods and learning of a co occurrence matrix between clusters of distinct variables provide a computationally relaxed way of otherwise intractable joint probability estimations. Utilizing this approach, we report explicitly different scoring results for aggressive and nonaggressive labelled driving experiences. Besides, we provide a rigorous analysis of clustering schemes applied on trajectory, traffic flow and driving style data. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Driving style scoring | en_US |
dc.subject | unsupervised learning | en_US |
dc.subject | machine learning | en_US |
dc.title | A Fully Unsupervised Framework for Scoring Driving Style | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 228 | |
dc.identifier.endpage | 234 | |
dc.authorid | 0000-0002-1741-0570 | - |
dc.authorid | 0000-0002-6717-5484 | - |
dc.identifier.wos | WOS:000469337900033 | en_US |
dc.identifier.scopus | 2-s2.0-85065994477 | en_US |
dc.institutionauthor | Tan, Mehmet | - |
dc.institutionauthor | Hayvacı, Harun Taha | - |
dc.identifier.doi | 10.1109/IS.2018.8710574 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
crisitem.author.dept | 02.5. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
2
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
3
checked on Dec 21, 2024
Page view(s)
84
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.