Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2875
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarutcu, Ahmet-
dc.contributor.authorGorguluarslan, Recep M.-
dc.date.accessioned2019-12-25T14:04:30Z-
dc.date.available2019-12-25T14:04:30Z-
dc.date.issued2020-
dc.identifier.citationBarutcu, A., and Gorguluarslan, R. M. A Parametric Modeling Approach for Prediction of Load Distribution due to Fluid Structure Interaction on Aircraft Structures. In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection.en_US
dc.identifier.isbn9780791859179-
dc.identifier.urihttps://doi.org/10.1115/DETC2019-98008-
dc.descriptionInternational Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2019: Anaheim; United States)en_US
dc.description.abstractThe Fluid Structure Interaction (FSI) is a critical multi physics phenomenon in the aerospace applications for computing loads. Including the FSI effects on the analysis requires high computational cost. A computationally efficient framework is presented in this study for predicting the FSI effects. The high-fidelity structural model is reduced on the elastic axis by using an efficient structural idealization technique. A parametric model generation process is developed by using Bezier surface control vertices (CVs) to estimate the changing load distribution under deformation. The aircraft wing outer surface is created by using Bezier surface modeling method for this purpose. The CVs of the surfaces are perturbed to predict the effect of the deformed shape on the load distribution. This method allows to predict the load distribution by using a few CVs instead of using all grid points. The Aerodynamic Influence Coefficients (AIC) matrix is generated based on the predicted loads based on this parametric modeling approach instead of conducting computationally expensive fluid flow analysis. The presented framework is implemented for an aircraft wing design to show its efficacy.en_US
dc.language.isoenen_US
dc.publisherAmer Soc Mechanical Engineersen_US
dc.relation.ispartofASME International Design Engineering Technical Conferences / Computers and Information in Engineering Conference -- AUG 18-21, 2019 -- Anaheim, CAen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFluid Structure Interactionen_US
dc.subjectMultiphysicsen_US
dc.subjectBezier Surfaceen_US
dc.subjectAerodynamic Influence Coefficienten_US
dc.titleA Parametric Modeling Approach for the Prediction of Load Distribution Due to Fluid Structure Interaction on Aircraft Structuresen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.authorid0000-0002-0550-8335-
dc.identifier.wosWOS:000518726700020-
dc.identifier.scopus2-s2.0-85076439180-
dc.institutionauthorGorguluarslan, Recep M.-
dc.identifier.doi10.1115/DETC2019-98008-
dc.authorwosidBarutcu, Ahmet/Hke-7359-2023-
dc.authorwosidGorguluarslan, Recep/Aag-3572-2019-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

300
checked on Aug 18, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.