Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2943
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖcalan, Özkan-
dc.contributor.authorDuman, Oktay-
dc.date.accessioned2019-12-25T14:34:16Z
dc.date.available2019-12-25T14:34:16Z
dc.date.issued2019-01
dc.identifier.citationÖcalan, Ö., & Duman, O. (2019). On solutions of the recursive equations x_{n+1}=x_{n-1}^{p}/x_{n}^{p} (p>0) via Fibonacci-type sequences. Electronic Journal of Mathematical Analysis and Applications, 7(1), 102-115.en_US
dc.identifier.issn2090-729X
dc.identifier.urihttps://tinyurl.com/tnwmnwd-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2943-
dc.description.abstractAbstract. In this paper, by using the classical Fibonacci sequence and the golden ratio, we first give the exact solution of the nonlinear recursive equation xn+1 = xn−1/xn with respect to certain powers of the initial values x−1 and x0. Then we obtain a necessary and sufficient condition on the initial values for which the equation has a non-oscillatory solution. Later we extend our all results to the recursive equations xn+1 = xp n−1/xp n (p > 0) in a similar manner. We also get a characterization for unbounded positive solutions. At the end of the paper we analyze all possible positive solutions and display some graphical illustrations verifying our results.en_US
dc.language.isoenen_US
dc.relation.ispartofElectronic Journal of Mathematical Analysis and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleOn Solutions of the Recursive Equations X_{n+1}=x_{n-1}^{p}/X_{n}^{p} (p>0) Via Fibonacci-Type Sequencesen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume7
dc.identifier.issue1
dc.identifier.startpage102
dc.identifier.endpage115
dc.authorid0000-0001-7779-6877-
dc.institutionauthorDuman, Oktay-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Show simple item record



CORE Recommender

Page view(s)

124
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.