Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3061
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThe ATLAS Collaboration-
dc.contributor.authorSultansoy, Saleh-
dc.date.accessioned2019-12-27T15:06:47Z-
dc.date.available2019-12-27T15:06:47Z-
dc.date.issued2019
dc.identifier.citationATLAS Collaboration. (2019). Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC. The European Physical Journal C, 79(5), 375.en_US
dc.identifier.issn14346044
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3061-
dc.identifier.urihttps://link.springer.com/article/10.1140%2Fepjc%2Fs10052-019-6847-8-
dc.description.abstractThe performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb - 1 for the tt¯ and ?+ jet and 36.7 fb - 1 for the dijet event topologies. © 2019, CERN for the benefit of the ATLAS collaboration.en_US
dc.language.isoenen_US
dc.publisher Springer New York LLCen_US
dc.relation.ispartofEuropean Physical Journal Cen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCollisions en_US
dc.subject jets en_US
dc.subject proton–proton collisionsen_US
dc.titlePerformance of Top-Quark and W -Boson Tagging With Atlas in Run 2 of the Lhcen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Material Science and Nanotechnology Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümütr_TR
dc.identifier.volume5
dc.identifier.issue5
dc.authorid0000-0003-2340-748X-
dc.identifier.wosWOS:000466407600007en_US
dc.identifier.scopus2-s2.0-85065123030en_US
dc.institutionauthorSultansoy, Saleh F.-
dc.identifier.doi10.1140/epjc/s10052-019-6847-8-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.6. Department of Material Science and Nanotechnology Engineering-
Appears in Collections:Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
sultansoy_Performanceoftop.pdf4 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

29
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

289
checked on Dec 21, 2024

Page view(s)

110
checked on Dec 23, 2024

Download(s)

28
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.