Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/3260
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Atahan Evrenk, Sule | - |
dc.contributor.author | Atalay, Fatma Betül | - |
dc.date.accessioned | 2019-12-30T07:28:21Z | |
dc.date.available | 2019-12-30T07:28:21Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Atahan-Evrenk, S., & Atalay, F. B. (2019). Prediction of Intramolecular Reorganization Energy Using Machine Learning. The Journal of Physical Chemistry A | en_US |
dc.identifier.issn | 1089-5639 | |
dc.identifier.other | 9 | |
dc.identifier.uri | https://pubs.acs.org/doi/10.1021/acs.jpca.9b02733 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/3260 | - |
dc.description.abstract | Facile charge transport is desired for many applications of organic semiconductors (OSCs). To take advantage of high-throughput screening methodologies for the discovery of novel OSCs, parameters relevant to charge transport are of high interest. The intramolecular reorganization energy (RE) is one of the important charge transport parameters suitable for molecular-level screening. Because the calculation of the RE with quantum-chemical methods is expensive for large-scale screening, we investigated the possibility of predicting the RE from the molecular structure by means of machine learning methods. We combinatorially generated a molecular library of 5631 molecules with extended conjugated backbones using benzene, thiophene, furan, pyrrole, pyridine, pyridazine, and cyclopentadiene as building blocks and obtained the target electronic data at the B3LYP level of theory with the 6-31G* basis set. We compared ridge, kernel ridge, and deep neural net (DNN) regression models based on graph- and geometry-based descriptors. We found that DNNs outperform the other methods and can predict the RE with a coefficient of determination of 0.92 and root-mean-square error of similar to 12 meV. This study shows that the REs of organic semiconductor molecules can be predicted from the molecular structures with high accuracy. | en_US |
dc.description.sponsorship | We thank Secil Usta and Simla B. Harma for help with DNN scripting and Isiksu Eksioglu for useful discussions regarding the use of the Keras python deep learning library. S.A.-E. acknowledges financial support from The Scientific and Technological Research Council of Turkey (Ardeb 3001 Programme, Grant 216Z096), software support from Chem Axon Ltd., and support from NVIDLA Corporation through the donation of the Titan Xp GPU used for this research. | |
dc.language.iso | en | en_US |
dc.publisher | AMER CHEMICAL SOC | en_US |
dc.relation.ispartof | JOURNAL OF PHYSICAL CHEMISTRY A | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Molecular structure | en_US |
dc.subject | Molecular modeling | en_US |
dc.subject | Mathematical methods | en_US |
dc.title | Prediction of Intramolecular Reorganization Energy Using Machine Learning | en_US |
dc.type | Article | en_US |
dc.department | Faculties, School of Medicine, Department of Basic Medical Sciences | en_US |
dc.department | Fakülteler, Tıp Fakültesi, Temel Tıp Bilimleri Bölümü | tr_TR |
dc.identifier.volume | 123 | |
dc.identifier.issue | 36 | |
dc.identifier.startpage | 7855 | |
dc.identifier.endpage | 7863 | |
dc.authorid | 0000-0002-4905-3491 | - |
dc.identifier.wos | WOS:000486361100021 | en_US |
dc.identifier.scopus | 2-s2.0-85072133045 | en_US |
dc.institutionauthor | Atahan Evrenk, Şule | - |
dc.institutionauthor | Atalay, Fatma Betül | - |
dc.identifier.pmid | 31204476 | en_US |
dc.identifier.doi | 10.1021/acs.jpca.9b02733 | - |
dc.authorwosid | D-4736-2012 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection Temel Tıp Bilimleri Bölümü / Department of Basic Medical Sciences WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
12
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
34
checked on Dec 21, 2024
Page view(s)
332
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.