Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3431
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHanalioğlu, Tahir-
dc.contributor.authorDoğan, Hazal Berve-
dc.date.accessioned2020-04-08T08:43:38Z
dc.date.available2020-04-08T08:43:38Z
dc.date.issued2019-01-01
dc.identifier.citationDoğan, B. (2019). Beklenmedik uçak yönlendirmelerini azaltma: zaman serisi analizi ve yapay sinir ağları ile modelleme. Ankara: TOBB ETÜ Fen Bilimleri Enstitüsü. [Yayınlanmamış yüksek lisans tezi]en_US
dc.identifier.urihttps://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3431-
dc.description.abstractBu çalışmada, bir havayolu şirketinin beklenmeyen yönlendirmelerinin sebep oldu-ğu maliyetlerin en aza indirgenmesi amacı ile bir karar destek sistemi tasarlanmış-tır. Söz konusu havayolu şirketi tarafından temin edilen meteorolojik veriler ışığın-da R programlama dili kullanılarak, görüş mesafesini öngörmek amacı ile yapılan analizlerin sonuçları sunulmuştur. Verilerin zaman serisi analiz yöntemleri kullanı-larak incelenmesi ile öngörülerde bulunmak amaçlanmıştır. İleriye dönük 3 saate karşılık gelecek şekilde ayrıntılı değerlendirme gerçekleştirilmiştir. Zaman serisi analizlerinden AR, MA, ARMA, ARIMA, AutoARIMA ve VAR kullanılarak elde edilen sonuçlar, hata oranı fonksiyonlarına göre karşılaştırılmıştır. Çalışmanın ikinci bölümünde, MATLAB programlama dili kullanılarak yapay sinir ağları oluşturul-muş, bu yöntem ile elde edilen meteorolojik verilerin tahminleri, zaman serisi ana-lizi sonuçları ile karşılaştırılmıştır. Sistemsel olarak iyileştirme, yönlendirilen uçuş-lara ait kararların doğruluğu ile ölçülmüştür. Ölçümler, karışıklık matrisine işlen-miştir.tr_TR
dc.description.abstractIn this study, a decision support system is designed in order to minimize the number of flights that are diverted unexpectedly. The aim is to reduce the expenses that arise when the aircraft is not able to land on the targeted airport due to the unfavorable weather conditions, such as rescheduling the timetable, overuse of aircraft fuel than planned, passengers' accommodation and ticket reissue. In order to reduce such temporal and financial losses caused by diverted flights, decision to take off or not is made before departure, while the decision to land or not is made during flight, after a brief analysis based on weather data of target airport. For the aircraft to land on target airport as scheduled, it is crucial that the weather forecasts for visibility range, ceiling and wind speed are within the limits of the safe flight requirements. Considering the significance of this decision regarding by finance, there is a need for a decision support system that is capable of boosting the process through optimal decision-making by forecasting airport weather conditions. In the first part of the study, weather is forecast using regression and time series analysis, of which methods can be detailed as auto regressive (AR), moving average (MA), auto regressive integrated moving average (ARIMA) and vector auto regressive (VAR). Although such forecast methods are relatively effective in achieving the desired result, neural network and fuzzy logic techniques are expected to present more accurate forecast with their complicated and advanced algorithm structure. In the second part of the study, neural networks are created with using MATLAB. The results which is obtained with these methods are compared time series analysis results. Improvement is measured by accuracy of the decisions of diverted flights. The measurements are recorded on the confusion matrix.en_US
dc.language.isotren_US
dc.publisherTOBB University of Economics and Technology,Graduate School of Engineering and Scienceen_US
dc.publisherTOBB ETÜ Fen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLSTMen_US
dc.subjectDiverten_US
dc.subjectWeather Forecasten_US
dc.subjectRegressionen_US
dc.subjectTime Seriesen_US
dc.subjectDecision Support Systemen_US
dc.subjectNeural Networken_US
dc.subjectRNNen_US
dc.subjectHavacılıktr_TR
dc.subjectUçak Yönlendirmetr_TR
dc.subjectHava Tahminitr_TR
dc.subjectZaman Serileritr_TR
dc.subjectKarar Destek Sistemitr_TR
dc.subjectTekrarlayan Yapay Sinir Ağları (TSA)tr_TR
dc.titleBeklenmedik Uçak Yönlendirmelerini Azaltma: Zaman Serisi Analizi ve Yapay Sinir Ağları ile Modellemeen_US
dc.title.alternativeReduce Unexpected Airline Diverts: Modelling With Time Series Analysis and Neural Networken_US
dc.typeMaster Thesisen_US
dc.departmentInstitutes, Graduate School of Engineering and Science, Industrial Engineering Graduate Programsen_US
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Endüstri Mühendisliği Ana Bilim Dalıtr_TR
dc.relation.publicationcategoryTezen_US
item.openairetypeMaster Thesis-
item.languageiso639-1tr-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Yüksek Lisans Tezleri / Industrial Engineering Master Theses
Files in This Item:
File Description SizeFormat 
577201.pdfHazal Berve Doğan_Tez4.17 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

450
checked on Dec 23, 2024

Download(s)

242
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.