Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3689
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFıçıcı, C. Öğretmenoğlu-
dc.contributor.authorEroğul, Osman-
dc.contributor.authorTelatar, Ziya-
dc.date.accessioned2020-09-17T14:43:38Z-
dc.date.available2020-09-17T14:43:38Z-
dc.date.issued2019-11
dc.identifier.citationFicici, C., Erogul, O., & Telatar, Z. (2019, November). Epileptic Activity Detection in EEG Signals using Linear and Non-linear Feature Extraction Methods. In 2019 11th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 449-455). IEEE.en_US
dc.identifier.isbn9786050112757
dc.identifier.otherarticle number 8990401
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3689-
dc.identifier.urihttps://ieeexplore.ieee.org/document/8990401-
dc.description.abstractThe aim of this study is to obtain an automated medical diagnosis-support system about epilepsy by classifying EEG signal epochs as ictal, inter-ictal and normal. EEG signals were analyzed in their sub-bands obtained via discrete wavelet transform. Linear and non-linear methods are used for extracting features of normal, ictal and inter-ictal states. Support vector machine classification is realized by using time domain features which are autoregressive coefficients and linear prediction error energy; and information theory based features which are Shannon entropy and approximate entropy. In order to improve accuracy, linear and non-linear features are combined and then SVM trained by these features. By the proposed method, 99.0%, 96.0%, 100% accuracy, sensitivity and specificity are obtained for epileptic and non-epileptic classification, while accuracy, sensitivity and specificity of 98.2%, 95.0 and 99.0% are obtained for normal, ictal, and inter-ictal activity classification, respectively.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 11th International Conference on Electrical and Electronics Engineering (ELECO)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEpilepsyen_US
dc.subjectAutoregressive Coefficientsen_US
dc.subjectLinear prediction erroren_US
dc.subjectShannon entropyen_US
dc.subjectApproximate entropyen_US
dc.subjectSupport vector machineen_US
dc.titleEpileptic Activity Detection in Eeg Signals Using Linear and Non-Linear Feature Extraction Methodsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Biomedical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümütr_TR
dc.identifier.startpage449
dc.identifier.endpage455
dc.authorid0000-0002-4640-6570-
dc.identifier.wosWOS:000552654100087en_US
dc.identifier.scopus2-s2.0-85080922476en_US
dc.institutionauthorEroğul, Osman-
dc.identifier.doi10.23919/ELECO47770.2019.8990401-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 9, 2024

Page view(s)

138
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.