Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/3847
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aksac, A. | - |
dc.contributor.author | Ozyer, T. | - |
dc.contributor.author | Alhajj, R. | - |
dc.date.accessioned | 2020-10-22T16:40:34Z | - |
dc.date.available | 2020-10-22T16:40:34Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Aksac, A., Ozyer, T. and Alhajj, R. (2020). Data on cut-edge for spatial clustering based on proximity graphs. Data in brief, 28, 104899. | en_US |
dc.identifier.issn | 2352-3409 | - |
dc.identifier.uri | https://doi.org/10.1016/j.dib.2019.104899 | - |
dc.description.abstract | Cluster analysis plays a significant role regarding automating such a knowledge discovery process in spatial data mining. A good clustering algorithm supports two essential conditions, namely high intra-cluster similarity and low inter-cluster similarity. Maximized intra-cluster/within-cluster similarity produces low distances between data points inside the same cluster. However, minimized inter-cluster/between-cluster similarity increases the distance between data points in different clusters by furthering them apart from each other. We previously presented a spatial clustering algorithm, abbreviated CutESC (Cut-Edge for Spatial Clustering) with a graph-based approach. The data presented in this article is related to and supportive to the research paper entitled “CutESC: Cutting edge spatial clustering technique based on proximity graphs” (Aksac et al., 2019) [1], where interpretation research data presented here is available. In this article, we share the parametric version of our algorithm named CutESC-P, the best parameter settings for the experiments, the additional analyses and some additional information related to the proposed algorithm (CutESC) in [1]. © 2019 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Inc. | en_US |
dc.relation.ispartof | Data in Brief | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Clustering | en_US |
dc.subject | Graph Theory | en_US |
dc.subject | Proximity Graphs | en_US |
dc.subject | Spatial Data Mining | en_US |
dc.title | Data on Cut-Edge for Spatial Clustering Based on Proximity Graphs | en_US |
dc.type | Data Paper | en_US |
dc.department | TOBB University of Economics and Technology | en_US |
dc.identifier.volume | 28 | en_US |
dc.authorid | 0000-0002-2529-5533 | - |
dc.identifier.wos | WOS:000520402100091 | - |
dc.identifier.scopus | 2-s2.0-85076525153 | - |
dc.institutionauthor | Özyer, Tansel | - |
dc.identifier.pmid | 31890778 | - |
dc.identifier.doi | 10.1016/j.dib.2019.104899 | - |
dc.authorscopusid | 37101194700 | - |
dc.authorscopusid | 8914139000 | - |
dc.authorscopusid | 7004187647 | - |
dc.relation.publicationcategory | Diğer | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | N/A | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Data Paper | - |
item.grantfulltext | open | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection Veri Makaleleri / Data Papers WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection Yapay Zeka Mühendisliği Bölümü / Department of Artificial Intelligence Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ozyer-tansel-data.pdf | 1.16 MB | Adobe PDF | ![]() View/Open | |
1-s2.0-S2352340919312545-main.pdf | 1.16 MB | Adobe PDF | View/Open |
CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.