Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3849
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2020-10-22T16:40:34Z-
dc.date.available2020-10-22T16:40:34Z-
dc.date.issued2019-11
dc.identifier.citationÖzbayoğlu, A. M. (2019, November). Unsupervised Fingerprint Classification with Directional Flow Filtering. In 2019 1st International Informatics and Software Engineering Conference (UBMYK) (pp. 1-4). IEEE.en_US
dc.identifier.isbn978-172813992-0
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3849-
dc.identifier.urihttps://ieeexplore.ieee.org/document/8965526-
dc.description.abstractIn this study, an unsupervised neural network model is proposed for fingerprint classification. The proposed model uses directional flow or local ridge orientation (LRO) information and the relative locations of the fingerprint singular points as features for the neural network. The LRO is obtained by storing the directional data in a neighborhood from the raw fingerprint and this data is filtered to prevent the flow errors due to noisy sections of the scanned fingerprint. From the resulting LRO data, the singular points are extracted and the information is used as the input to the SimNet unsupervised neural network model and the fingerprint is classified accordingly. For identification, the raw image is passed through a band-pass filter and the minutiae are extracted from the processed and thinned fingerprint image. The fingerprint identification is performed within the obtained class by comparing the minutiae of the input fingerprint to the other existing prints in that class. The number of classes can be adjusted by the number of the singular points and the distance between these points. The results show that the model can generate a hierarchical classification model that can reduce the search space for identification which could be used in small to mid size fingerprint database applications. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFingerprint classificationen_US
dc.subjectfingerprint identificationen_US
dc.subjectneural networksen_US
dc.subjectunsupervised learningen_US
dc.titleUnsupervised Fingerprint Classification With Directional Flow Filteringen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.authorid0000-0001-7998-5735-
dc.identifier.scopus2-s2.0-85079240380en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1109/UBMYK48245.2019.8965526-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

Page view(s)

84
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.