Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3853
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYıldırım, E. O.-
dc.contributor.authorUçar, M.-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2020-10-22T16:40:34Z-
dc.date.available2020-10-22T16:40:34Z-
dc.date.issued2019-11
dc.identifier.citationYıldırım, E. O., Uçar, M. and Özbayoğlu, A. M. (2019, November). Evolutionary optimized stock support-resistance line detection for algorithmic trading systems. In 2019 1st International Informatics and Software Engineering Conference (UBMYK) (pp. 1-6). IEEE.en_US
dc.identifier.isbn978-172813992-0
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3853-
dc.identifier.urihttps://ieeexplore.ieee.org/document/8965471-
dc.description.abstractSuccessful stock traders have been using support-resistance lines for their trading decisions for decades. At the same time, correctly identifying these imaginary lines is one of the greatest challenges that they constantly face due to the complex and mostly inconsistent nature of this phenomenon. Still, these lines are considered among one of the most important technical indicators for designating buy-sell points. It is very difficult, if not impossible to determine the best support-resistance lines for any given stock; hence most of the time, the traders manually draw these imaginary lines on stock charts and implement their trading strategies accordingly. In this study, our aim is automatically identifying these lines through an evolutionary optimization algorithm (PSO) and using these support-resistance points for deciding the optimum buy-sell points. The proposed strategy is compared against Buy Hold. The results indicate using optimized support-resistance lines can be used for identifying buy-sell points, meanwhile if we only decide to use these automatically-generated lines, no significant improvement was observed when compared to Buy Hold strategy. However, this is a preliminary study and more analyses need to be performed. If the model is used as one of the multiple inputs to a more comprehensive trading system along with other technical/fundamental indicators, better results might be achieved. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlgorithmic tradingen_US
dc.subjectevolutionary algorithms (EA)en_US
dc.subjectparticle swarm optimization (PSO)en_US
dc.subjectStock marketen_US
dc.subjectsupport-resistanceen_US
dc.subjecttechnical analysisen_US
dc.subjecttechnical indicatorsen_US
dc.titleEvolutionary Optimized Stock Support-Resistance Line Detection for Algorithmic Trading Systemsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.relation.tubitakinfo:eu-repo/grantAgreement/TÜBİTAK/EEEAG/215E248en_US
dc.authorid0000-0001-7998-5735-
dc.identifier.scopus2-s2.0-85079231482en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1109/UBMYK48245.2019.8965471-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

Page view(s)

136
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.