Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3898
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkarsu, Alper-
dc.contributor.authorGirici, Tolga-
dc.date.accessioned2020-10-22T16:46:31Z-
dc.date.available2020-10-22T16:46:31Z-
dc.date.issued2019-06
dc.identifier.citationAkarsu, and Girici, T. (2019, June). Resilient deployment of drone base stations. In 2019 International Symposium on Networks, Computers and Communications (ISNCC) (pp. 1-5). IEEE.en_US
dc.identifier.isbn978-172811243-5
dc.identifier.issn2472-4386
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3898-
dc.identifier.urihttps://ieeexplore.ieee.org/document/8909193-
dc.description.abstractDrone base stations have emerged as a promising solution to the requirements of future cellular networks which may not be fully met by the existing terrestrial base stations. The main reasons for the superiority of DBSs are the higher probability of line of sight (LoS) and mobility in the sky which provides better adaptation to the demands of users. However, drones are complex electro-mechanical systems and more prone to the errors compared to that of radio communication systems. With the help of onboard sensors, failure tendency of a drone can be estimated and this information can be used to determine the positions of DBSs. In this work, we address the problem of DBSs' deployment where one of the DBSs is assumed to have a high probability of failure. Our proposed algorithm jointly determines the positions of DBSs before a failure occurs and paths to be followed in order to recover the network. Our simulations show that our proposed algorithm provides significant gain in the minimum user data rate performance of the network during recovery phase with tolerable loss in the initial performance compared to the benchmark algorithm.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2019 International Symposium on Networks, Computers and Communications, ISNCC 2019en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDrone Base Stationen_US
dc.subjectEmergency Networken_US
dc.subjectBattlefield Networken_US
dc.subjectParticle Swarm Optimizationen_US
dc.titleResilient Deployment of Drone Base Stationsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.authorid0000-0002-5705-4806-
dc.identifier.wosWOS:000520478600101en_US
dc.identifier.scopus2-s2.0-85075938689en_US
dc.institutionauthorGirici, Tolga-
dc.identifier.doi10.1109/ISNCC.2019.890919-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

94
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.