Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/3903
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seyfioğlu, Mehmet Saygın | - |
dc.contributor.author | Erol, Barış | - |
dc.contributor.author | Gürbüz, Sevgi Zübeyde | - |
dc.contributor.author | Amin, Moeness G. | - |
dc.date.accessioned | 2020-10-22T16:46:32Z | - |
dc.date.available | 2020-10-22T16:46:32Z | - |
dc.date.issued | 2019-12 | |
dc.identifier.citation | Seyfioglu, M. S., Erol, B., Gurbuz, S. Z., and Amin, M. G. (2018). DNN transfer learning from diversified micro-Doppler for motion classification. IEEE Transactions on Aerospace and Electronic Systems, 55(5), 2164-2180. | en_US |
dc.identifier.issn | 1557-9603 | |
dc.identifier.issn | 0018-9251 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/3903 | - |
dc.identifier.uri | https://ieeexplore.ieee.org/document/8572732 | - |
dc.description.abstract | Recently, deep neural networks (DNNs) have been the subject of intense research for the classification of radio frequency signals, such as synthetic aperture radar imagery or micro-Doppler signatures. However, a fundamental challenge is the typically small amount of data available due to the high costs and resources required for measurements. Small datasets limit the depth of DNNs implementable, and limit performance. In this work, a novel method for generating diversified radar micro-Doppler signatures using Kinect-based motion capture simulations is proposed as a training database for transfer learning with DNNs. In particular, it is shown that together with residual learning, the proposed DivNet approach allows for the construction of DNNs and offers improved performance in comparison to transfer learning from optical imagery. Furthermore, it is shown that initializing the network using diversified synthetic micro-Doppler signatures enables not only robust performance for previously unseen target profiles, but also class generalization. Results are presented for 7-class and 11-class human activity recognition scenarios using a 4-GHz continuous wave software-defined radar. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | IEEE Transactions on Aerospace and Electronic Systems | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Synthetic aperture radar | en_US |
dc.subject | Training | en_US |
dc.subject | Mathematical model | en_US |
dc.subject | Radar imaging | en_US |
dc.subject | Radar cross-sections | en_US |
dc.subject | Convolutional neural networks (CNNs) | en_US |
dc.subject | deep neural networks (DNNs) | en_US |
dc.subject | micro-Doppler simulation | en_US |
dc.subject | radar classification | en_US |
dc.subject | residual learning | en_US |
dc.subject | transfer learning | en_US |
dc.title | Dnn Transfer Learning From Diversified Micro-Doppler for Motion Classification | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 55 | |
dc.identifier.issue | 5 | |
dc.identifier.startpage | 2164 | |
dc.identifier.endpage | 2180 | |
dc.authorid | 0000-0002-2961-4976 | - |
dc.identifier.wos | WOS:000495013100006 | en_US |
dc.identifier.scopus | 2-s2.0-85058643357 | en_US |
dc.institutionauthor | Seyfioğlu, Mehmet Saygın | - |
dc.identifier.doi | 10.1109/TAES.2018.2883847 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
23
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
81
checked on Dec 21, 2024
Page view(s)
152
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.