Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3935
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTan, Mehmet-
dc.contributor.authorEkşioğlu, Işıksu-
dc.date.accessioned2020-11-25T11:34:32Z
dc.date.available2020-11-25T11:34:32Z
dc.date.issued2020
dc.identifier.citationEkşioğlu, I. (2020).Toplu öğrenme ile ilaç kombinasyonlarının sinerji skor tahmini. Ankara: TOBB ETÜ Fen Bilimleri Enstitüsü. [Yayınlanmamış yüksek lisans tezi]tr_TR
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3935-
dc.description.abstractKanser gibi ortaya çıkış sebebi birden fazla genetik ve çevresel nedene bağlı olan kompleks hastalıkların tedavisinde son zamanlarda en çok tercih edilen yöntem; birden fazla ilacın birarada kullanıldığı politerapi (kombinasyonel terapi) yöntemidir. Eğer bir ilaç kombinasyonunun, herhangi bir hastalığa sahip hücre hattına olan etkisi, kombinasyondaki ilaçların tek başına uygulanmasıyla elde edilen etkilerin toplamından fazlaysa, bu ilaç kombinasyonuna sinerjik ilaç kombinasyonu denir. Son zamanlarda bu alanda yapılan çalışmalarda, yapay öğrenme yöntemlerinin sinerjik ilaç kombinasyonlarını belirlemede zaman,kaynak kullanımı vs. gibi birçok açıdan verimlilik sağladıkları gözlemlenmştir. Bu tez çalışması iki bölümden oluşmaktadır. İlk bölümde farklı ilaç gösterimleriyle oluşturduğumuz veri kümelerinin, ilaç kombinasyonlarının sinerjilerinin derecelerini gösteren sinerji skorlarının tahminine olan etkileri incelendi. Kullandığımız ilaç gösterimlerinden bazıları sinerji skoru tahmini için ilk defa kullanılan verilerdir. Bu aşamada oluşturduğumuz veri kümeleri ile yapay öğrenme modellerinden elde edilen tahminler birleştirilerek kapsamlı bir onkoloji veri kümesindeki sinerji skorlarının tahmini için literatürdeki en iyi sonuçlar elde edildi. İkinci bülümde, ilaç-kanserli hücre hattı ikilileri için bir yapay öğrenme modelinin tahmin ettiği sinerji skorlarını en iyileyecek ikinci ilaçlar (moleküller) oluşturulmaya çalışıldı. Bu amaç için varyasyonel oto kodlayıcı ve gradyan çıkış yapay öğrenme yöntemlerinden yararlanıldı. Bu çalışmanın sonucunda en iyilenen sinerji skoruna yakın skorlar veren moleküllere, belirli bir oranın üzerinde benzeyen moleküllerin oluşturulduğu gözlemlendi.tr_TR
dc.description.abstractRecently, the most preferred method in the treatment of complex diseases such as cancer, the origin of which is due to more than one genetic and environmental causes, is polytherapy (combination therapy). It is a method of where more than one drug is used together. If the effect of a drug combination on the cell line with any disease is greater than the sum of the effects achieved by applying the drugs in the combination alone, this drug combination is called a synergistic drug combination. In recent studies in this field, It has been observed that machine learning methods provide efficiency for determining synergistic drug combinations in many aspects such as time, resources, etc. This thesis consists of two parts. In the first part, the effects of data sets that we created with different drug representations on the estimation of synergy scores which show the degree of synergism of drug combinations were examined. Some of the drug representations used for the first time for synergy score estimation. The best results in the literature were obtained for the estimation of synergy scores in a comprehensive oncology dataset by combining machine learning predictions' for these datasets. In the second part, we tried to create second drugs (molecules) for drug-cancer cell line pairs that would optimize synergy scores predicted by an artificial learning model. For this purpose, variational autocoder and gradient ascent methods were used. As a result of this study, it has been observed that, machine learning methods can create molecules that are similar with the molecules that give scores close to the synergy scores that are optimized.en_US
dc.language.isotren_US
dc.publisherTOBB ETÜ Fen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGraph neural networken_US
dc.subjectAutoencoderen_US
dc.subjectMachine learningen_US
dc.subjectDeep learningen_US
dc.subjectDrug combinations’ synergy scores predictionen_US
dc.subjectMolecule generationen_US
dc.subjectFeature importance analysisen_US
dc.subjectDerin Öğrenmetr_TR 
dc.subjectÇizgi sinir ağıtr_TR
dc.subjectOto-kodlayıcıtr_TR
dc.subjectMakine öğrenmesitr_TR
dc.subjectİlaç kombinasyonları sinerji skoru tahminitr_TR
dc.subjectMolekül tasarımıtr_TR
dc.subjectÖznitelik önem analizitr_TR
dc.titleToplu Öğrenme ile İlaç Kombinasyonlarının Sinerji Skor Tahminien_US
dc.title.alternativePrediction of Drug Combinations' Synergy Score by Ensemble Learningen_US
dc.typeMaster Thesisen_US
dc.departmentInstitutes, Graduate School of Engineering and Science, Computer Engineering Graduate Programsen_US
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalıtr_TR
dc.relation.publicationcategoryTezen_US
item.openairetypeMaster Thesis-
item.languageiso639-1tr-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Yüksek Lisans Tezleri / Computer Engineering Master Theses
Files in This Item:
File Description SizeFormat 
629145 (1).pdfIşıksu Ekşioğlu_Tez1.26 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

316
checked on Dec 23, 2024

Download(s)

98
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.