Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/3986
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karahisarlı, Gamzegül | - |
dc.contributor.author | Merdan, Hüseyin | - |
dc.contributor.author | Tridane, Abdessamad | - |
dc.date.accessioned | 2021-01-22T06:22:28Z | - |
dc.date.available | 2021-01-22T06:22:28Z | - |
dc.date.issued | 2020 | |
dc.identifier.citation | Karahisarli, G., Merdan, H., & Tridane, A. (2020). Stability and zero-Hopf bifurcation analysis of a tumour and T-helper cells interaction model in the case of HIV infection. Miskolc Mathematical Notes, 21(2), 911-937. | en_US |
dc.identifier.issn | 1787-2405 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11851/3986 | - |
dc.identifier.uri | https://doi.org/10.18514/MMN.2020.3412 | - |
dc.description.abstract | In this paper, we present a mathematical model governing the dynamics of tumourimmune cells interaction under HIV infection. The interactions between tumour cells, helper T-cells, infected helper T-cells and virus cells are explained by using delay differential equations including two different discrete time delays. In the model, these time lags describe the time needed by the helper T-cells to find (or recognize) tumour cells and virus, respectively. First, we analyze the dynamics of the model without delays. We prove the positivity of the solution, analyze the local and global stabilities of the steady states of the model. Second, we study the effects of two discrete time delays on the stability of the endemically infected equilibrium point. We determine the conditions on parameters at which the system undergoes a zero-Hopf bifurcation. Choosing one of the delay terms as a bifurcation parameter and fixing the other, we show that a zero-Hopf bifurcation arises as the bifurcation parameter passes through a critical value. Finally, we perform numerical simulations to support and extend our theoretical results. The results concluded help to better understand the links between the immune system and the tumour development in the case of HIV infection. | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of Miskolc | en_US |
dc.relation.ispartof | Miskolc Mathematical Notes | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | HIV infection | en_US |
dc.subject | tumour | en_US |
dc.subject | T-helper cells | en_US |
dc.subject | delay differential equation | en_US |
dc.subject | stability analysis | en_US |
dc.subject | Lyapunov function | en_US |
dc.subject | zero-Hopf bifurcation | en_US |
dc.title | Stability and Zero-Hopf Bifurcation Analysis of a Tumour and T-Helper Cells Interaction Model in the Case of Hiv Infection | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Science and Literature, Department of Mathematics | en_US |
dc.department | Fakülteler, Fen Edebiyat Fakültesi, Matematik Bölümü | tr_TR |
dc.identifier.volume | 21 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 911 | |
dc.identifier.endpage | 937 | |
dc.identifier.wos | WOS:000602739200027 | en_US |
dc.identifier.scopus | 2-s2.0-85099975214 | en_US |
dc.institutionauthor | Merdan, Hüseyin | - |
dc.identifier.doi | 10.18514/MMN.2020.3412 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 07.03. Department of Mathematics | - |
Appears in Collections: | Matematik Bölümü / Department of Mathematics Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Stabilityand.pdf | Text | 1.28 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
234
checked on Dec 23, 2024
Download(s)
112
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.