Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/4040
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Görgün, Mustafa Kaan | - |
dc.contributor.author | Kutlu, Mücahid | - |
dc.contributor.author | Taş, Bedri Kamil Onur | - |
dc.date.accessioned | 2021-01-25T11:28:55Z | - |
dc.date.available | 2021-01-25T11:28:55Z | - |
dc.date.issued | 2020-09 | - |
dc.identifier.citation | Gorgun, M. K., Kutlu, M., and Taş, B. K. O. (2020, September). Predicting The Number of Bidders in Public Procurement. In 2020 5th International Conference on Computer Science and Engineering (UBMK) (pp. 360-365). IEEE. | en_US |
dc.identifier.isbn | 978-172817565-2 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/4040 | - |
dc.identifier.uri | https://ieeexplore.ieee.org/document/9219404 | - |
dc.description.abstract | Public procurement constitutes an important part of economical activities. In order to effectively use public resources, increasing competition among firms participating in public procurement is essential. In this work, we investigate the impact of content information on the number of bidders in public procurement. We explore 6 different groups of features including n-grams, named entities, language of notices, country of the authority, description length, and CPV codes. In our experiments, we show that our proposed models outperform all baselines. In particular, k-nearest neighbor model with n-grams achieves the best prediction accuracy. Our model can be used by public procurement officials to automatically examine procurement notices and detect the ones causing low competition. Besides, participating firms can use our model to predict potential competition they will face, and make better decisions accordingly. © 2020 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 5th International Conference on Computer Science and Engineering | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Competitiveness Prediction | en_US |
dc.subject | European Union | en_US |
dc.subject | Public Procurement | en_US |
dc.title | Predicting the Number of Bidders in Public Procurement | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Faculties, Faculty of Economics and Administrative Sciences, Department of Economics | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.department | Fakülteler, İktisadi ve İdari Bilimler Fakültesi, İktisat Bölümü | tr_TR |
dc.identifier.startpage | 360 | - |
dc.identifier.endpage | 365 | - |
dc.authorid | 0000-0002-5660-4992 | - |
dc.identifier.wos | WOS:000629055500070 | en_US |
dc.identifier.scopus | 2-s2.0-85095685256 | en_US |
dc.institutionauthor | Kutlu, Mücahid | - |
dc.institutionauthor | Taş, Bedri Kamil Onur | - |
dc.identifier.doi | 10.1109/UBMK50275.2020.9219404 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
crisitem.author.dept | 04.01. Department of Economics | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering İktisat Bölümü / Department of Economics Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
4
checked on Dec 21, 2024
Page view(s)
162
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.