Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/4040
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGörgün, Mustafa Kaan-
dc.contributor.authorKutlu, Mücahid-
dc.contributor.authorTaş, Bedri Kamil Onur-
dc.date.accessioned2021-01-25T11:28:55Z-
dc.date.available2021-01-25T11:28:55Z-
dc.date.issued2020-09-
dc.identifier.citationGorgun, M. K., Kutlu, M., and Taş, B. K. O. (2020, September). Predicting The Number of Bidders in Public Procurement. In 2020 5th International Conference on Computer Science and Engineering (UBMK) (pp. 360-365). IEEE.en_US
dc.identifier.isbn978-172817565-2-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/4040-
dc.identifier.urihttps://ieeexplore.ieee.org/document/9219404-
dc.description.abstractPublic procurement constitutes an important part of economical activities. In order to effectively use public resources, increasing competition among firms participating in public procurement is essential. In this work, we investigate the impact of content information on the number of bidders in public procurement. We explore 6 different groups of features including n-grams, named entities, language of notices, country of the authority, description length, and CPV codes. In our experiments, we show that our proposed models outperform all baselines. In particular, k-nearest neighbor model with n-grams achieves the best prediction accuracy. Our model can be used by public procurement officials to automatically examine procurement notices and detect the ones causing low competition. Besides, participating firms can use our model to predict potential competition they will face, and make better decisions accordingly. © 2020 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof5th International Conference on Computer Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCompetitiveness Predictionen_US
dc.subjectEuropean Unionen_US
dc.subjectPublic Procurementen_US
dc.titlePredicting the Number of Bidders in Public Procurementen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFaculties, Faculty of Economics and Administrative Sciences, Department of Economicsen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, İktisat Bölümütr_TR
dc.identifier.startpage360-
dc.identifier.endpage365-
dc.authorid0000-0002-5660-4992-
dc.identifier.wosWOS:000629055500070en_US
dc.identifier.scopus2-s2.0-85095685256en_US
dc.institutionauthorKutlu, Mücahid-
dc.institutionauthorTaş, Bedri Kamil Onur-
dc.identifier.doi10.1109/UBMK50275.2020.9219404-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
crisitem.author.dept04.01. Department of Economics-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
İktisat Bölümü / Department of Economics
Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

4
checked on Dec 21, 2024

Page view(s)

162
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.