Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/4060
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMillidere, M.-
dc.contributor.authorKaraman, U.-
dc.contributor.authorUslu, S.-
dc.contributor.authorKasnakoğlu, Coşku-
dc.contributor.authorÇimen, T.-
dc.date.accessioned2021-01-25T11:32:57Z-
dc.date.available2021-01-25T11:32:57Z-
dc.date.issued2020-06
dc.identifier.citationMillidere, M., Karaman, U., Uslu, S., Kasnakoglu, C., and Çimen, T. (2020). Newton-Raphson Methods in Aircraft Trim: A Comparative Study. In AIAA AVIATION 2020 FORUM (p. 3198).en_US
dc.identifier.isbn978-162410598-2
dc.identifier.urihttps://hdl.handle.net/20.500.11851/4060-
dc.identifier.urihttps://arc.aiaa.org/doi/10.2514/6.2020-3198-
dc.description.abstractWhile simulating and analyzing air-vehicle motion during flight, it is not possible to use the nonlinear model directly without appropriate initial conditions. The initial condition stands for a point about which air-vehicle flight condition must not change abruptly. This point is referred to as the trim condition. In this paper, classical Newton-Raphson method will be used first to find the trim conditionby solving a system of nonlinear algebraic equations. When the starting point is not close to a solution, the Newton-Raphson algorithm behaves erratically. Sometimes, components of the unknown inputs and states or the Jacobian will result in numerical instability. Global convergence is then addressed, which is the issue of trying to force convergence to a solution from a remote starting point. The Newton-Raphson method can be made more robust by using line search technique. A comparative study is carried out by incorporating different methods for solving the nonlinear equations in F-16 aircraft trim. The attainability of various trim conditions is also investigated. © 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Aeronautics and Astronautics Inc, AIAAen_US
dc.relation.ispartofAIAA AVIATION 2020 FORUMen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAircraft Design en_US
dc.subject Airframes en_US
dc.subject Stability Derivativesen_US
dc.titleNewton-Raphson Methods in Aircraft Trim: a Comparative Studyen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume1
dc.identifier.startpage1
dc.identifier.endpage28
dc.authorid0000-0002-9928-727X-
dc.identifier.scopus2-s2.0-85092801169en_US
dc.institutionauthorKasnakoğlu, Coşku-
dc.identifier.doi10.2514/6.2020-3198-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.7. Department of Mechanical Engineering-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

Page view(s)

106
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.