Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/4133
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzbayoğlu, Gülhan-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2021-02-04T06:06:48Z
dc.date.available2021-02-04T06:06:48Z
dc.date.issued2008
dc.identifier.citationÖzbayoglu, A.M. and G. Özbayoglu. Hardgrove Grindability Index Estimation using Neural Networks”, International Mineral Processing Symposium (IMPS 2008), Antalya, Turkey.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11851/4133-
dc.description.abstractIn a previous study, different techniques for the estimation of coal HGI values were investigated (Özbayoğlu et.al, 2008). As continuation of that research, in this study a revised neural network methodology is used for estimating the HGI values using the same data from 163 sub-bituminous coals from Turkey. The parameter set used for estimating HGI consisted of moisture, ash, volatile matter and Rmax ratios. These 4 coal parameters were fed into different neural network topologies. The network parameters were optimized by genetic algorithms. The test results indicate that estimation rate was improved %10-15 over the previous results (Özbayoğlu et.al, 2008) by using this new parameter set and optimized neural network configurations.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Mineral Processing Symposium (IMPS 2008)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.titleHardgrove Grindability Index Estimation Using Neural Networksen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.authorid0000-0001-7998-5735-
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Files in This Item:
File Description SizeFormat 
B47-Coal2008-619510.pdf147.07 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

146
checked on Dec 23, 2024

Download(s)

32
checked on Dec 23, 2024

Google ScholarTM

Check





This item is licensed under a Creative Commons License Creative Commons