Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5504
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEmrah K.-
dc.contributor.authorProdinger, Helmut-
dc.date.accessioned2021-09-11T15:19:08Z-
dc.date.available2021-09-11T15:19:08Z-
dc.date.issued2010en_US
dc.identifier.issn0015-0517-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5504-
dc.description.abstractA generalized Filbert matrix is introduced, sharing properties of the Hubert matrix and Fibonacci numbers. Explicit formulae are derived for the LU-decomposition, their inverses, and the Cholesky factorization. The approach is to use q-analysis and to leave the justification of the necessary identities to the q-version of Zeilberger's celebrated algorithm.en_US
dc.language.isoenen_US
dc.relation.ispartofFibonacci Quarterlyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleA Generalized Filbert Matrixen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume48en_US
dc.identifier.issue1en_US
dc.identifier.startpage29en_US
dc.identifier.endpage33en_US
dc.identifier.wosWOS:000213600900004en_US
dc.identifier.scopus2-s2.0-84860800602en_US
dc.institutionauthorKılıç, Emrah-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

17
checked on Dec 21, 2024

Page view(s)

54
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.