Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5587
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaraköy, M.-
dc.contributor.authorKışlal, O.-
dc.contributor.authorTang, X.-
dc.contributor.authorKandemir, M. T.-
dc.contributor.authorArunachalam, M.-
dc.date.accessioned2021-09-11T15:19:19Z-
dc.date.available2021-09-11T15:19:19Z-
dc.date.issued2019en_US
dc.identifier.citation14th Joint Conference of International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2019 and IFIP Performance Conference 2019, SIGMETRICS/Performance 2019, 24 June 2019 through 28 June 2019, , 149007en_US
dc.identifier.isbn9781450366786-
dc.identifier.urihttps://doi.org/10.1145/3309697.3331508-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5587-
dc.description.abstractObserving that many application programs from different domains can live with less-than-perfect accuracy, existing techniques try to trade off program output accuracy with performance-energy savings. While these works provide point solutions, they leave three critical questions regarding approximate computing unanswered: (i) what is the maximum potential of skipping (i.e., not performing) data accesses under a given inaccuracy bound?; (ii) can we identify the data accesses to drop randomly, or is being architecture aware critical?; and (iii) do two executions that skip the same number of data accesses always result in the same output quality (error)? This paper first provides answers to these questions using ten multithreaded workloads, and then presents a program slicing-based approach that identifies the set of data accesses to drop. Results indicate 8.8% performance improvement and 13.7% energy saving are possible when we set the error bound to 2%, and the corresponding improvements jump to 15% and 25%, respectively, when the error bound is raised to 4%. © 2019 Copyright held by the owner/author(s).en_US
dc.description.sponsorshipIntel Corporationen_US
dc.description.sponsorshipACM SIGMETRICSen_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machinery, Incen_US
dc.relation.ispartofSIGMETRICS Performance 2019 - Abstracts of the 2019 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectApproximate computingen_US
dc.subjectCompileren_US
dc.subjectManycore systemen_US
dc.titleArchitecture-aware approximate computing [Conference Object]en_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage23en_US
dc.identifier.endpage24en_US
dc.identifier.scopus2-s2.0-85069210662en_US
dc.institutionauthorKaraköy, Mustafa-
dc.identifier.doi10.1145/3309697.3331508-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference14th Joint Conference of International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2019 and IFIP Performance Conference 2019, SIGMETRICS/Performance 2019en_US
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeConference Object-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

64
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.