Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/5618
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Übeyli, Elif Derya | - |
dc.date.accessioned | 2021-09-11T15:19:24Z | - |
dc.date.available | 2021-09-11T15:19:24Z | - |
dc.date.issued | 2006 | en_US |
dc.identifier.issn | 0148-5598 | - |
dc.identifier.uri | https://doi.org/10.1007/s10916-006-9034-z | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/5618 | - |
dc.description.abstract | This paper illustrates the use of combined neural network (CNN) models to guide model selection for diagnosis of internal carotid arterial (ICA) disorders. The ICA Doppler signals were decomposed into time-frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The first level networks were implemented for the diagnosis of ICA disorders using the statistical features as inputs. To improve diagnostic accuracy, the second level network was trained using the outputs of the first level networks as input data. The CNN models achieved accuracy rates which were higher than that of the stand-alone neural network models. © 2006 Springer Science+Business Media, Inc. | en_US |
dc.description.sponsorship | ETU-BAP-2006/06 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Journal of Medical Systems | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Combined neural network model | en_US |
dc.subject | Diagnostic accuracy | en_US |
dc.subject | Discrete wavelet transform | en_US |
dc.subject | Doppler signal | en_US |
dc.subject | Internal carotid artery | en_US |
dc.title | Combining neural network models for automated diagnostic systems | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 30 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.startpage | 483 | en_US |
dc.identifier.endpage | 488 | en_US |
dc.identifier.scopus | 2-s2.0-33845385926 | en_US |
dc.institutionauthor | Übeyli, Elif Derya | - |
dc.identifier.pmid | 17233161 | en_US |
dc.identifier.doi | 10.1007/s10916-006-9034-z | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
11
checked on Nov 16, 2024
Page view(s)
86
checked on Nov 11, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.