Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5621
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBurhan, Türkşen İ.-
dc.contributor.authorÇelikyılmaz, Aslı-
dc.date.accessioned2021-09-11T15:19:24Z-
dc.date.available2021-09-11T15:19:24Z-
dc.date.issued2006en_US
dc.identifier.issn1562-2479-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5621-
dc.description.abstract"Fuzzy Functions" are proposed to be determined separately by two regression estimation models: the least squares estimation (LSE), and Support Vector Machines for Regression (SVR), techniques for the development of fuzzy system models. LSE model tries to estimate the fuzzy function parameters linearly in the original space, whereas SVR algorithm maps the data samples into higher dimensional feature space and estimates a linear fuzzy function in the feature space. The membership values of input vectors are calculated using FCM algorithm or any variation of it. They are then used with scalar input variables by the LSE and SVR techniques to determine "Fuzzy Functions" for each cluster identified by FCM. "Fuzzy Functions" estimated with LSE and SVR methodologies are proposed as alternate representations and reasoning schemas to the fuzzy rule base approaches. We show with three case studies that the new approaches give better results in comparison to well-known fuzzy rule base approaches, i.e., Takagi-Sugeno [28] and Sugeno-Yasukawa [27] in test cases. © 2006 TFSA.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Fuzzy Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy functionsen_US
dc.subjectLeast squaresen_US
dc.subjectMembership valuesen_US
dc.subjectReasoningen_US
dc.subjectRule basesen_US
dc.subjectSupport vector machines for regressionen_US
dc.titleComparison of Fuzzy Functions With Fuzzy Rule Base Approachesen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume8en_US
dc.identifier.issue3en_US
dc.identifier.startpage137en_US
dc.identifier.endpage149en_US
dc.identifier.scopus2-s2.0-33750914661en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

64
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.