Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/5624
Title: | Comparison of iterative sparse recovery algorithms | Other Titles: | Yi?nelemeli? seyrek geri? oluşturma algori? tmalarinin karşilaştirilmasi | Authors: | Karakuş, C. Gürbüz, A. C. |
Publisher: | IEEE Computer Society | Abstract: | Most signals can be represented sparsely in a basis. Recently, Compressive Sensing Theorem which offers convex optimization algorithms based on ?1-minimization for sparse signal recovery is often being used. In this paper, some of the iterative signal recovery algorithms alternative to ?1-minimization solution which are Orthogonal Matching Pursuit (OMP), Compressive Sampling Matching Pursuit (CoSaMP), Iterative Hard Thresholding (IHT) and Lipschitz Iterative Hard Theresholding (LIHT) are compared in noisy and noiseless conditions with various tests. Iterative algorithms alternative to the ?1 optimization method with similar performance are verified. OMP algorithm that works at higher true reconstruction rates in noisy and noiseless conditions can be preferred instead of convex optimization methods. © 2011 IEEE. | URI: | https://doi.org/10.1109/SIU.2011.5929787 https://hdl.handle.net/20.500.11851/5624 |
ISBN: | 9781457704635 |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
9
checked on Nov 16, 2024
Page view(s)
40
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.