Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5654
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOnural, E. B.-
dc.contributor.authorYüksel, I. E.-
dc.contributor.authorSalami, B.-
dc.date.accessioned2021-09-11T15:19:31Z-
dc.date.available2021-09-11T15:19:31Z-
dc.date.issued2020en_US
dc.identifier.citation30th International Conference on Field-Programmable Logic and Applications, FPL 2020, 31 August 2020 through 4 September 2020, , 163966en_US
dc.identifier.isbn9781728199023-
dc.identifier.urihttps://doi.org/10.1109/FPL50879.2020.00076-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5654-
dc.description.abstractThis demo aims to demonstrate undervolting below the nominal level set by the vendor for off-the-shelf FPGAs running Deep Neural Networks (DNNs), to achieve power-efficiency. FPGAs are becoming popular [1-4], thanks to their higher throughput than GPUs and better flexibility than ASICs. To further improve the power-efficiency, we propose to employ undervolting below the nominal level (i.e., V_nom= 850mV for studied platform). FPGA vendors usually add a voltage guardband to ensure the correct operation under the worst-case circuit and environmental conditions [5-9]. However, these guardbands can be very conservative and unnecessary for state-of-the-art applications. Reducing the voltage in this guardband region does not lead to reliability issues under normal operating conditions, and thus, eliminating it can result in a significant power reduction for a wide variety of real-world applications. We will experimentally demonstrate a large voltage guardband for modern FPGAs: an average of 33%. Eliminating this guardband leads to significant power-efficiency (GOPs/W) improvement, on average, 2.6X, see Figure 1. © 2020 IEEE.en_US
dc.description.sponsorshipHorizon 2020 Framework Programme: 780681en_US
dc.description.sponsorshipCobham;et al.;Microsoft;Optiver;Xilinx;ZeroPoint Technologiesen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 30th International Conference on Field-Programmable Logic and Applications, FPL 2020en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDNNen_US
dc.subjectFPGAen_US
dc.subjectGuardbanden_US
dc.subjectPower efficiencyen_US
dc.subjectUndervoltingen_US
dc.titleDemonstrating Reduced-Voltage Fpga-Based Neural Network Acceleration for Power-Efficiencyen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage371en_US
dc.identifier.wosWOS:000679186400064en_US
dc.identifier.scopus2-s2.0-85095609935en_US
dc.institutionauthorOnural, Erhan Baturay-
dc.institutionauthorYüksel, İsmail Emir-
dc.identifier.doi10.1109/FPL50879.2020.00076-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference30th International Conference on Field-Programmable Logic and Applications, FPL 2020en_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

74
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.