Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5670
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüler, İnan-
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:19:34Z-
dc.date.available2021-09-11T15:19:34Z-
dc.date.issued2006en_US
dc.identifier.issn1300-1884-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/57605-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5670-
dc.description.abstractArtificial neural networks (ANNs) have become modeling tools that have found extensive acceptance and they have frequently used in applications in many disciplines for solving complex problems. Different ANN structures are valuable models, which are used in the medical field for the development of decision support systems. In this study, four multilayer perceptron neural networks (MLPNNs) trained with different algorithms were used for diabetes prediction and the most efficient training algorithm was determined. Backpropagation, delta-bar-delta, extended delta-bar-delta and quick propagation were the studied four training algorithms. The MLPNNs were trained, cross validated and tested with subject records from the database. Performance indicators and statistical measures were used for evaluating the MLPNNs and the results demonstrated that the quick propagation algorithm was the most efficient multilayer perceptron training algorithm for diabetes prediction.en_US
dc.language.isotren_US
dc.relation.ispartofJournal of the Faculty of Engineering and Architecture of Gazi Universityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDiabetes diagnosisen_US
dc.subjectMultilayer perceptron neural networken_US
dc.subjectTraining algorithmsen_US
dc.titleÇok Katmanlı Perseptron Sinir Ağları ile Diyabet Hastalığının Teşhisien_US
dc.title.alternativeDiabetes Diagnosis by Multilayer Perceptron Neural Networksen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume21en_US
dc.identifier.issue2en_US
dc.identifier.startpage319en_US
dc.identifier.endpage326en_US
dc.identifier.scopus2-s2.0-33745843284en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.trdizinid57605en_US
item.openairetypeArticle-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

80
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.