Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5740
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİlhan, I.-
dc.contributor.authorGürbüz, A. C.-
dc.date.accessioned2021-09-11T15:19:50Z-
dc.date.available2021-09-11T15:19:50Z-
dc.date.issued2015en_US
dc.identifier.citation2015 23rd Signal Processing and Communications Applications Conference, SIU 2015, 16 May 2015 through 19 May 2015, , 113052en_US
dc.identifier.isbn9781467373869-
dc.identifier.urihttps://doi.org/10.1109/SIU.2015.7130341-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5740-
dc.description.abstractDetection of parametric shapes i.e. line, circle, ellipse etc. in images is one of the most significant topics in diverse areas such as image and signal processing, pattern recognition and remote sensing. Compressive Sensing(CS) theory details how the signal is sparsely reconstructed in a known basis from low number of linear measurement. Sparsity of parametric shapes in parameter space offers to detect parametric shapes from low number of linear measurements under frameworks proposed by CS methods. Joint detedon performance of different parametric shapes in image is studied under different small number of measurements and noise level. Because of being both discrete image space and discretized parameter space, effect of offgrid, one of the most important problem in CS,is analysed in terms of shape detection. Results show that parametric shapes can robustly be found with a few measurements and effects of offgrid are seen as distribution of target energy in parameter space. © 2015 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcircle detectionen_US
dc.subjectcompressive sensingen_US
dc.subjectHough transformen_US
dc.subjectline detectionen_US
dc.subjectoff-griden_US
dc.subjectshape detectionen_US
dc.titleFinding Sparse Parametric Shapes From Low Number of Imase Measurementsen_US
dc.title.alternativeSeyrek Parametrik Şekillerin Görüntülerden Az Öblçüm Altlnda Tespitien_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.startpage2314en_US
dc.identifier.endpage2317en_US
dc.identifier.scopus2-s2.0-84939168980en_US
dc.institutionauthorGürbüz, Ali Cafer-
dc.identifier.doi10.1109/SIU.2015.7130341-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference2015 23rd Signal Processing and Communications Applications Conference, SIU 2015en_US
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

50
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.