Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/5766
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abul, Osman | - |
dc.contributor.author | Atzori M. | - |
dc.contributor.author | Bonchi F. | - |
dc.contributor.author | Giannotti F. | - |
dc.date.accessioned | 2021-09-11T15:19:57Z | - |
dc.date.available | 2021-09-11T15:19:57Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.citation | 17th IEEE International Conference on Data Mining Workshops, ICDM Workshops 2007, 28 October 2007 through 31 October 2007, Omaha, NE, 73001 | en_US |
dc.identifier.isbn | 0769530192; 9780769530192 | - |
dc.identifier.issn | 1550-4786 | - |
dc.identifier.uri | https://doi.org/10.1109/ICDMW.2007.93 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/5766 | - |
dc.description.abstract | Spatio-temporal traces left behind by moving individuals are increasingly available. On the one hand, mining this kind of data is expected to produce interesting behavioral knowledge enabling novel classes of mobility applications; but on the other hand, due to the peculiar nature of position data, mining it creates important privacy concerns. Thus, studying privacy preserving data mining methods for moving object data is interesting and challenging. In this paper, we address the problem of hiding sensitive trajectory patterns from moving objects databases. The aim is to modify the database such that a given set of sensitive trajectory patterns can no longer be extracted, while the others are preserved as much as possible. We provide the formal problem statement and show that it is NP-hard; so we devise heuristics and a polynomial sanitization algorithm. We discuss a possible attack to our model, that exploits the knowledge of the underlying road network, and we enhance our model to protect from this kind of attacks. Experimental results show the effectiveness of our proposal. © 2007 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Proceedings - IEEE International Conference on Data Mining, ICDM | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Hiding Sensitive Trajectory Patterns | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 693 | en_US |
dc.identifier.endpage | 698 | en_US |
dc.identifier.scopus | 2-s2.0-49549100210 | en_US |
dc.institutionauthor | Abul, Osman | - |
dc.identifier.doi | 10.1109/ICDMW.2007.93 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | 17th IEEE International Conference on Data Mining Workshops, ICDM Workshops 2007 | en_US |
dc.identifier.scopusquality | - | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
20
checked on Dec 21, 2024
Page view(s)
102
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.