Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5767
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİmamoğlu, N.-
dc.contributor.authorEresen, A.-
dc.contributor.authorÖzbayoğlu, A. M.-
dc.date.accessioned2021-09-11T15:19:57Z-
dc.date.available2021-09-11T15:19:57Z-
dc.date.issued2011en_US
dc.identifier.citation2011 International Symposium on INnovations in Intelligent SysTems and Applications, INISTA 2011, 15 June 2011 through 18 June 2011, Istanbul-Kadikoy, 85879en_US
dc.identifier.isbn9781612849195-
dc.identifier.urihttps://doi.org/10.1109/INISTA.2011.5946079-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5767-
dc.description.abstractFeature extraction techniques play a vital part in pattern recognition applications. In order to achieve the best performance in a particular classification problem, the most appropriate feature extractor for the problem is pursued. In this paper, a Pseudo-Zernike Moments based model is used as the feature extractor due to its reliability in illumination and rotation invariant multi-class object classification. A Hierarchical Rule-Based Neural Networks (HRB-NN) approach is proposed to classify multi-class data using hierarchical classification based on similarity measures between different classes. HRB-NN performance is compared to Nearest Neighbor and Bayesian classifiers. For implementation, a database of 960 images (640 training, 320 testing) for 8 different objects is used. The proposed method was able to classify the given data without any failure by giving the best performance outperforming the other chosen classifiers. © 2011 IEEE.en_US
dc.description.sponsorshipTUBITAK;IEEEen_US
dc.language.isoenen_US
dc.relation.ispartofINISTA 2011 - 2011 International Symposium on INnovations in Intelligent SysTems and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjecthierarchical rule-based neural networksen_US
dc.subjectnearest neighbor and Bayesian classifiersen_US
dc.subjectpseudo zernike momentsen_US
dc.titleHierarchical Rule-Based Neural Network for Multi-Object Classification Using Invariant Featuresen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage296en_US
dc.identifier.endpage299en_US
dc.identifier.scopus2-s2.0-79961198605en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1109/INISTA.2011.5946079-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference2011 International Symposium on INnovations in Intelligent SysTems and Applications, INISTA 2011en_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

Page view(s)

54
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.