Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5913
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:20:44Z-
dc.date.available2021-09-11T15:20:44Z-
dc.date.issued2015en_US
dc.identifier.isbn9781461434429; 9781461434412-
dc.identifier.urihttps://doi.org/10.1007/978-1-4614-3442-9_4-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5913-
dc.description.abstractDecision making under uncertainty is an interdisciplinary research field.In this chapter, we attempt to create a framework for the human decision-making processes withType 1 and FullType 2 Fuzzy Logic methodology. For this purpose, we first present a brief review of the essentials of (1) Zadeh's rule basemodel,(2) Takagi and Sugeno's model which is partly a rule baseand partly a regression function, and (3) TÜrkşen's model of fuzzy regression functions where a fuzzy regressionfunction corresponds to each fuzzy rule in a fuzzy rule base model. Next, wereview the well-known fuzzy C-means (FCM) algorithm which lets one to extract Type 1 membership values from a given data set for the development of Type 1 fuzzy system models as a foundation for the development of Full Type 2 fuzzy systemmodels.Forhispurpose, we provide an algorithm which lets one to generate Full Type 2 membership value distributions for a development of second-order fuzzy systemmodels with our proposed second-order data analysis. If required, one can generate Full Type 3,…, Full Type n fuzzy system models with an iterative execution of our proposedalgorith.We present our applied results graphically for TD_Stockprice data with respect to two validity indices, namely (1) Çelikyılmaz-TÜrkşen and (2) Bezdek indices. © Springer Science+Business Media, LLC 2015.en_US
dc.language.isoenen_US
dc.publisherSpringer New Yorken_US
dc.relation.ispartofFrontiers of Higher Order Fuzzy Setsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputing with wordsen_US
dc.subjectFuzzy sets and logicen_US
dc.subjectMeta-linguistic expressionsen_US
dc.subjectType 1 and full type 2 fuzzy system modelsen_US
dc.subjectUncertaintyen_US
dc.titleRecent advances in fuzzy system modelingen_US
dc.typeBook Parten_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.startpage51en_US
dc.identifier.endpage66en_US
dc.identifier.scopus2-s2.0-84944184712en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1007/978-1-4614-3442-9_4-
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeBook Part-
item.languageiso639-1en-
item.grantfulltextnone-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 2, 2024

Page view(s)

44
checked on Nov 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.