Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5933
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNagi, M.-
dc.contributor.authorElhajj, A.-
dc.contributor.authorAddam, O.-
dc.contributor.authorQabaja, A.-
dc.contributor.authorZarour, O.-
dc.contributor.authorJarada, T.-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2021-09-11T15:20:52Z-
dc.date.available2021-09-11T15:20:52Z-
dc.date.issued2012en_US
dc.identifier.issn1743-8187-
dc.identifier.urihttps://doi.org/10.1504/IJBIDM.2012.048725-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5933-
dc.description.abstractThe work described in this paper is motivated by the fact that the structure of a website may not satisfy a larger population of the visiting users who may jump between pages of the website before they land on the target page(s); this is at least partially true because access patterns were not known when the website was designed. We developed a robust framework that tackles this problem by considering both web log data and web structure data to suggest a more compact structure that could satisfy a larger user group. The study assumes the trend recorded so far in the web log reflects well the anticipated behaviour of the users in the future. We separately analyse web log and web structure data using three techniques, namely clustering, frequent pattern mining and network analysis. The final outcome from the two stages is reflected on to one of the six models, namely the network of pages to report linking pages by the most appropriate connections. Copyright © 2012 Inderscience Enterprises Ltd.en_US
dc.language.isoenen_US
dc.publisherInderscience Publishersen_US
dc.relation.ispartofInternational Journal of Business Intelligence and Data Miningen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClusteringen_US
dc.subjectFrequent pattern miningen_US
dc.subjectNetwork analysisen_US
dc.subjectWeb logen_US
dc.subjectWeb structure miningen_US
dc.subjectWeb usage miningen_US
dc.titleRobust Framework for Recommending Restructuring of Websites by Analysing Web Usage and Web Structure Dataen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume7en_US
dc.identifier.issue1-2en_US
dc.identifier.startpage4en_US
dc.identifier.endpage20en_US
dc.identifier.scopus2-s2.0-84865998103en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.doi10.1504/IJBIDM.2012.048725-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

Page view(s)

40
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.