Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5935
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAksoylu, B.-
dc.contributor.authorYeter Z.-
dc.date.accessioned2021-09-11T15:20:53Z-
dc.date.available2021-09-11T15:20:53Z-
dc.date.issued2010en_US
dc.identifier.issn1432-9360-
dc.identifier.urihttps://doi.org/10.1007/s00791-010-0140-6-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5935-
dc.description.abstractWe study a conservative 5-point cell-centered finite volume discretization of the high-contrast diffusion equation. We aim to construct preconditioners that are robust with respect to the magnitude of the coefficient contrast and the mesh size simultaneously. For that, we prove and numerically demonstrate the robustness of the preconditioner proposed by Aksoylu et al. (Comput Vis Sci 11:319-331, 2008) by extending the devised singular perturbation analysis from linear finite element discretization to the above discretization. The singular perturbation analysis is more involved than that of finite element case because all the subblocks in the discretization matrix depend on the diffusion coefficient. However, as the diffusion coefficient approaches infinity, that dependence is eliminated. This allows the same preconditioner to be utilized due to similar limiting behaviours of the submatrices; leading to a narrowing family of preconditioners that can be used for different discretizations. Therefore, we have accomplished a desirable preconditioner design goal. We compare our numerical results to standard cell-centered multigrid implementations and observe that performance of our preconditioner is independent of the utilized smoothers and prolongation operators. As a side result, we also prove a fundamental qualitative property of solution of the high-contrast diffusion equation. Namely, the solution over the highly-diffusive island becomes constant asymptotically. Integration of this qualitative understanding of the underlying PDE to our preconditioner is the main reason behind its superior performance. Diagonal scaling is probably the most basic preconditioner for high-contrast coefficients. Extending the matrix entry based spectral analysis introduced by Graham and Hagger, we rigorously show that the number of small eigenvalues of the diagonally scaled matrix depends on the number of isolated islands comprising the highly-diffusive region. This indicates that diagonal scaling creates a significant clustering of the spectrum, a favorable property for faster convergence of Krylov subspace solvers. © 2010 Springer-Verlag.en_US
dc.language.isoenen_US
dc.relation.ispartofComputing and Visualization in Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCell-centered discretizationen_US
dc.subjectCell-centered multigriden_US
dc.subjectDeflationen_US
dc.subjectDiagonal scalingen_US
dc.subjectDiffusion equationen_US
dc.subjectDiscontinuous coefficientsen_US
dc.subjectFinite volumeen_US
dc.subjectHigh-contrast coefficientsen_US
dc.subjectInterface problemen_US
dc.subjectMass conservativeen_US
dc.subjectSingular perturbation analysisen_US
dc.titleRobust multigrid preconditioners for cell-centered finite volume discretization of the high-contrast diffusion equationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume13en_US
dc.identifier.issue5en_US
dc.identifier.startpage229en_US
dc.identifier.endpage245en_US
dc.identifier.wosWOS:000217962600004en_US
dc.identifier.scopus2-s2.0-78649727129en_US
dc.institutionauthorAksoylu, Burak-
dc.identifier.doi10.1007/s00791-010-0140-6-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 2, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 2, 2024

Page view(s)

44
checked on Nov 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.