Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/5999
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKılıç, E.-
dc.contributor.authorStanic, P.-
dc.date.accessioned2021-09-11T15:21:19Z-
dc.date.available2021-09-11T15:21:19Z-
dc.date.issued2010en_US
dc.identifier.issn0835-3026-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/5999-
dc.description.abstractThis paper considers the Lehmer matrix and its recursive analogue. The determinant of Lehmer matrix is derived explicitly by both its LU and Cholesky factorizations. We further define a generalized Lehmer matrix with (i, j) entries gij = min{ui+1,uj+1}/max{ui+1,uj+1} where un is the nth term of a binary sequence {un} We derive both the LU and Cholesky factorizations of this analogous matrix and we precisely compute the determinant.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Combinatorial Mathematics and Combinatorial Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleThe Lehmer Matrix and Its Recursive Analogueen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume74en_US
dc.identifier.startpage193en_US
dc.identifier.endpage205en_US
dc.identifier.scopus2-s2.0-78651552210en_US
dc.institutionauthorKılıç, Emrah-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

72
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.