Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6007
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Eğecioğlu, Ömer | - |
dc.contributor.author | Saygı, Elif | - |
dc.contributor.author | Saygı, Zülfükar | - |
dc.date.accessioned | 2021-09-11T15:21:23Z | - |
dc.date.available | 2021-09-11T15:21:23Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 2651-477X | - |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/494732 | - |
dc.identifier.uri | https://doi.org/10.15672/hujms.750244 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6007 | - |
dc.description.abstract | Fibonacci cubes and Lucas cubes have been studied as alternatives for the classical hy-percube topology for interconnection networks. These families of graphs have interesting graph theoretic and enumerative properties. Among the many generalization of Fibonacci cubes are k-Fibonacci cubes, which have the same number of vertices as Fibonacci cubes, but the edge sets determined by a parameter k. In this work, we consider k-Lucas cubes, which are obtained as subgraphs of k-Fibonacci cubes in the same way that Lucas cubes are obtained from Fibonacci cubes. We obtain a useful decomposition property of k-Lucas cubes which allows for the calculation of basic graph theoretic properties of this class: the number of edges, the average degree of a vertex, the number of hypercubes they contain, the diameter and the radius. © 2021, Hacettepe University. All rights reserved. | en_US |
dc.description.sponsorship | 117R032 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Hacettepe University | en_US |
dc.relation.ispartof | Hacettepe Journal of Mathematics and Statistics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fibonacci cube | en_US |
dc.subject | Fibonacci number | en_US |
dc.subject | Hypercube | en_US |
dc.subject | K-Fibonacci cube | en_US |
dc.subject | Lucas cube | en_US |
dc.subject | Lucas number | en_US |
dc.title | The Structure of K-Lucas Cubes | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Science and Literature, Department of Mathematics | en_US |
dc.department | Fakülteler, Fen Edebiyat Fakültesi, Matematik Bölümü | tr_TR |
dc.identifier.volume | 50 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 754 | en_US |
dc.identifier.endpage | 769 | en_US |
dc.identifier.wos | WOS:000693856500014 | en_US |
dc.identifier.scopus | 2-s2.0-85111072388 | en_US |
dc.institutionauthor | Saygı, Zülfükar | - |
dc.identifier.doi | 10.15672/hujms.750244 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.identifier.trdizinid | 494732 | en_US |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 07.03. Department of Mathematics | - |
Appears in Collections: | Matematik Bölümü / Department of Mathematics Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
3
checked on Dec 21, 2024
Page view(s)
110
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.