Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6019
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAladag C. H.-
dc.contributor.authorYolcu U.-
dc.contributor.authorEgrioğlu E.-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:21:28Z-
dc.date.available2021-09-11T15:21:28Z-
dc.date.issued2016-
dc.identifier.issn1755-8050-
dc.identifier.urihttps://doi.org/10.1504/IJDATS.2016.075970-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6019-
dc.description.abstractFor time series forecasting four kinds of fuzzy-based approaches can be used. These are fuzzy regression techniques, fuzzy time series methods, fuzzy inference systems, and fuzzy function approaches. There are some major problems in using fuzzy regression techniques and fuzzy inference systems for time series forecasting. Therefore, it would be wise to use a forecasting approach which combines fuzzy time series and fuzzy function approaches. In this study, a fuzzy time series forecasting method based on fuzzy function approach is proposed by adopting fuzzy function approach to time series forecasting. And, the proposed approach is called type-1 fuzzy time series function approach. Also, in the proposed approach, the lagged variables of the system are determined by using binary particle swarm optimisation. In order to evaluate the performance of the proposed method, it has been applied to well-known time series of Australian beer consumption and Istanbul stock exchange dataset. © 2016 Inderscience Enterprises Ltd.en_US
dc.language.isoenen_US
dc.publisherInderscience Enterprises Ltd.en_US
dc.relation.ispartofInternational Journal of Data Analysis Techniques and Strategiesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectFuzzy functionsen_US
dc.subjectFuzzy time seriesen_US
dc.subjectFuzzy time series functionen_US
dc.subjectParticle swarm optimisationen_US
dc.titleType-1 Fuzzy Time Series Function Method Based on Binary Particle Swarm Optimisationen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.identifier.volume8en_US
dc.identifier.issue1en_US
dc.identifier.startpage2en_US
dc.identifier.endpage13en_US
dc.identifier.scopus2-s2.0-84978394372-
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1504/IJDATS.2016.075970-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Dec 28, 2024

Page view(s)

38
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.