Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6019
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aladag C. H. | - |
dc.contributor.author | Yolcu U. | - |
dc.contributor.author | Egrioğlu E. | - |
dc.contributor.author | Türkşen, İsmail Burhan | - |
dc.date.accessioned | 2021-09-11T15:21:28Z | - |
dc.date.available | 2021-09-11T15:21:28Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.issn | 1755-8050 | - |
dc.identifier.uri | https://doi.org/10.1504/IJDATS.2016.075970 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6019 | - |
dc.description.abstract | For time series forecasting four kinds of fuzzy-based approaches can be used. These are fuzzy regression techniques, fuzzy time series methods, fuzzy inference systems, and fuzzy function approaches. There are some major problems in using fuzzy regression techniques and fuzzy inference systems for time series forecasting. Therefore, it would be wise to use a forecasting approach which combines fuzzy time series and fuzzy function approaches. In this study, a fuzzy time series forecasting method based on fuzzy function approach is proposed by adopting fuzzy function approach to time series forecasting. And, the proposed approach is called type-1 fuzzy time series function approach. Also, in the proposed approach, the lagged variables of the system are determined by using binary particle swarm optimisation. In order to evaluate the performance of the proposed method, it has been applied to well-known time series of Australian beer consumption and Istanbul stock exchange dataset. © 2016 Inderscience Enterprises Ltd. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Inderscience Enterprises Ltd. | en_US |
dc.relation.ispartof | International Journal of Data Analysis Techniques and Strategies | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Fuzzy functions | en_US |
dc.subject | Fuzzy time series | en_US |
dc.subject | Fuzzy time series function | en_US |
dc.subject | Particle swarm optimisation | en_US |
dc.title | Type-1 fuzzy time series function method based on binary particle swarm optimisation | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Industrial Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 8 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 2 | en_US |
dc.identifier.endpage | 13 | en_US |
dc.identifier.scopus | 2-s2.0-84978394372 | en_US |
dc.institutionauthor | Türkşen, İsmail Burhan | - |
dc.identifier.doi | 10.1504/IJDATS.2016.075970 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
Appears in Collections: | Endüstri Mühendisliği Bölümü / Department of Industrial Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
5
checked on Nov 2, 2024
Page view(s)
38
checked on Nov 4, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.