Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6028
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzkan, E. C.-
dc.contributor.authorSaleem, M.-
dc.contributor.authorDoğdu, Erdoğan-
dc.contributor.authorNgomo, A. C. N.-
dc.date.accessioned2021-09-11T15:21:32Z-
dc.date.available2021-09-11T15:21:32Z-
dc.date.issued2016en_US
dc.identifier.citation3rd International Workshop on Dataset PROFIling and fEderated Search for Linked Data, PROFILES 2016, 30 May 2016, , 122216en_US
dc.identifier.issn1613-0073-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6028-
dc.description.abstractEfficient source selection is one of the most important optimization steps in federated SPARQL query processing as it leads to more efficient query execution plan generation. An over-estimation of the data sources will generate extra network traffic by retrieving irrelevant intermediate results. Such intermediate results will be excluded after performing joins between triple patterns. Consequently an over-estimation of sources may result in increased query execution time. Devising triple patterns join-aware source selection approaches has shown to yield great improvement potential. In this work, we present UPSP, a new source selection approach for SPARQL query federation over multiple SPARQL endpoints. UPSP makes use of the subject-subject, subject-object, object-subject, and object-object joins information stored in an index structure to perform efficient triple patterns join-aware source selection. Our evaluation results on FedBench shows that UPSP outperforms state-of-the-art source selection approaches by selecting smaller number of sources (without losing recall) and reducing the query execution times.en_US
dc.language.isoenen_US
dc.publisherCEUR-WSen_US
dc.relation.ispartofCEUR Workshop Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFederated queryen_US
dc.subjectHibiscusen_US
dc.subjectLinked dataen_US
dc.subjectSource pruningen_US
dc.titleUPSP: Unique predicate-based source selection for SPARQL endpoint federationen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume1597en_US
dc.identifier.scopus2-s2.0-84977597915en_US
dc.institutionauthorDoğdu, Erdoğan-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference3rd International Workshop on Dataset PROFIling and fEderated Search for Linked Data, PROFILES 2016en_US
dc.identifier.scopusquality--
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeConference Object-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

66
checked on Nov 11, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.