Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6057
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Efe, Mehmet Önder | - |
dc.date.accessioned | 2021-09-11T15:34:50Z | - |
dc.date.available | 2021-09-11T15:34:50Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.citation | IEEE International Conference on Control Applications/International Symposium on Intelligent Control -- JUL 08-10, 2009 -- St Petersburg, RUSSIA | en_US |
dc.identifier.isbn | 978-1-4244-4601-8 | - |
dc.identifier.issn | 1085-1992 | - |
dc.identifier.uri | https://doi.org/10.1109/CCA.2009.5281184 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6057 | - |
dc.description.abstract | This paper presents a comparison of Adaptive Neuro Fuzzy Inference Systems (ANFIS), Multi layer Perceptron (MLP) and Support Vector Machines (SVMs) in identification of a chemical process displaying a rich set of dynamical responses under different operating conditions. The methods considered are selected carefully as they are the foremost approaches exploiting the linguistic representations in ANFIS, connectionist representations in MLP and machine learning based on structural risk minimization in SVM. The comparison metrics are the computational complexity measured by the propagation delay, realization performance and design simplicity. It is seen that SVM algorithm performs better in terms of providing an accurate fit to the desired dynamics but a very close performance result can also be obtained with ANFIS with significantly lower computational cost. Performance with MLP is comparably lower that the other two algorithms yet MLP structure has the lowest computational complexity. | en_US |
dc.description.sponsorship | IEEE Control Sys Soc | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2009 IEEE Control Applications Cca & Intelligent Control (Isic), Vols 1-3 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | [No Keywords] | en_US |
dc.title | A Comparison of Anfis, Mlp and Svm in Identification of Chemical Processes | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | IEEE International Conference on Control Applications | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 689 | en_US |
dc.identifier.endpage | 694 | en_US |
dc.authorid | 0000-0002-5992-895X | - |
dc.identifier.wos | WOS:000279628300118 | en_US |
dc.identifier.scopus | 2-s2.0-74049091350 | en_US |
dc.institutionauthor | Önder Efe, Mehmet | - |
dc.identifier.doi | 10.1109/CCA.2009.5281184 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | IEEE International Conference on Control Applications/International Symposium on Intelligent Control | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.5. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
8
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
10
checked on Aug 31, 2024
Page view(s)
74
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.