Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6059
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFescioğlu, Ünver, Nilgün-
dc.contributor.authorTanyeri, Başak-
dc.date.accessioned2021-09-11T15:34:51Z-
dc.date.available2021-09-11T15:34:51Z-
dc.date.issued2013en_US
dc.identifier.issn0266-4763-
dc.identifier.issn1360-0532-
dc.identifier.urihttps://doi.org/10.1080/02664763.2012.750717-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6059-
dc.description.abstractA merger proposal discloses a bidder firm's desire to purchase the control rights in a target firm. Predicting who will propose (bidder candidacy) and who will receive (target candidacy) merger bids is important to investigate why firms merge and to measure the price impact of mergers. This study investigates the performance of artificial neural networks and multinomial logit models in predicting bidder and target candidacy. We use a comprehensive data set that covers the years 19792004 and includes all deals with publicly listed bidders and targets. We find that both models perform similarly while predicting target and non-merger firms. The multinomial logit model performs slightly better in predicting bidder firms.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofJournal of Applied Statisticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectmergersen_US
dc.subjectartificial neural network modelsen_US
dc.subjectmultinomial logistic modelsen_US
dc.titleA Comparison of Artificial Neural Network and Multinomial Logit Models in Predicting Mergersen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume40en_US
dc.identifier.issue4en_US
dc.identifier.startpage712en_US
dc.identifier.endpage720en_US
dc.authorid0000-0002-9354-2639-
dc.authorid0000-0002-5332-8670-
dc.identifier.wosWOS:000316390500003en_US
dc.identifier.scopus2-s2.0-84875794290en_US
dc.institutionauthorFescioğlu Ünver, Nilgün-
dc.identifier.doi10.1080/02664763.2012.750717-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

7
checked on Aug 31, 2024

Page view(s)

106
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.