Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6085
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGasilov, Nizami-
dc.contributor.authorAmrahov, Şahin Emrah-
dc.contributor.authorFatullayev, Afet Golayoğlu-
dc.contributor.authorKarakas, Halil İbrahim-
dc.contributor.authorAkın, Ömer-
dc.date.accessioned2021-09-11T15:34:54Z-
dc.date.available2021-09-11T15:34:54Z-
dc.date.issued2011en_US
dc.identifier.issn1526-1492-
dc.identifier.issn1526-1506-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6085-
dc.description.abstractIn this paper, linear systems with a crisp real coefficient matrix and with a vector of fuzzy triangular numbers on the right-hand side are studied. A new method, which is based on the geometric representations of linear transformations, is proposed to find solutions. The method uses the fact that a vector of fuzzy triangular numbers forms a rectangular prism in n-dimensional space and that the image of a parallelepiped is also a parallelepiped under a linear transformation. The suggested method clarifies why in general case different approaches do not generate solutions as fuzzy numbers. It is geometrically proved that if the coefficient matrix is a generalized permutation matrix, then the solution of a fuzzy linear system (FLS) is a vector of fuzzy numbers irrespective of the vector on the right-hand side. The most important difference between this and previous papers on FLS is that the solution is sought as a fuzzy set of vectors (with real components) rather than a vector of fuzzy numbers. Each vector in the solution set solves the given FLS with a certain possibility. The suggested method can also be applied in the case when the right-hand side is a vector of fuzzy numbers in parametric form. However, in this case, alpha-cuts of the solution cannot be determined by geometric similarity and additional computations are needed.en_US
dc.language.isoenen_US
dc.publisherTech Science Pressen_US
dc.relation.ispartofCmes-Computer Modeling In Engineering & Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy linear systemen_US
dc.subjecttriangular fuzzy numberen_US
dc.subjectgeneralized permutation matrixen_US
dc.titleA Geometric Approach To Solve Fuzzy Linear Systemsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume75en_US
dc.identifier.issue3-4en_US
dc.identifier.startpage189en_US
dc.identifier.endpage203en_US
dc.identifier.wosWOS:000295152100002en_US
dc.identifier.scopus2-s2.0-80052711282en_US
dc.institutionauthorAkın, Ömer-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

5
checked on Aug 31, 2024

Page view(s)

94
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.