Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6090
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZarandi, Mohammad Hossein Fazel-
dc.contributor.authorAlaeddini, A.-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:34:55Z-
dc.date.available2021-09-11T15:34:55Z-
dc.date.issued2008en_US
dc.identifier.issn0020-0255-
dc.identifier.issn1872-6291-
dc.identifier.urihttps://doi.org/10.1016/j.ins.2007.09.028-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6090-
dc.description.abstractIn crisp run control rules, usually it is stated that a process moves very sharply from in-control condition to out-of-control act. This causes an increase in both false-alarm rate and control chart sensitivity. Moreover, the classical run control rules are not implemented on an intelligent sampling strategy that changes control charts' parameters to reduce error probability when the process appears to have a shift in parameter values. This paper presents a new hybrid method based on a combination of fuzzified sensitivity criteria and fuzzy adaptive sampling rules, which make the control charts more sensitive and proactive while keeping false alarms rate acceptably low. The procedure is based on a simple strategy that includes varying control chart parameters (sample size and sample interval) based on current fuzzified state of the process and makes inference about the state of process based on fuzzified run rules. Furthermore, in this paper, the performance of the proposed method is examined and compared with both conventional run rules and adaptive sampling schemes. (c) 2007 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofInformation Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectstatistical process controlen_US
dc.subjectcontrol chartsen_US
dc.subjectrun rulesen_US
dc.subjectadaptive samplingen_US
dc.subjectfuzzy modelingen_US
dc.subjectfuzzy inferenceen_US
dc.subjectgenetic algorithmsen_US
dc.titleA Hybrid Fuzzy Adaptive Sampling - Run Rules for Shewhart Control Chartsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume178en_US
dc.identifier.issue4en_US
dc.identifier.startpage1152en_US
dc.identifier.endpage1170en_US
dc.identifier.wosWOS:000253184800015en_US
dc.identifier.scopus2-s2.0-36549051694en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1016/j.ins.2007.09.028-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

81
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

75
checked on Aug 31, 2024

Page view(s)

36
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.