Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6091
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZarandi, Mohammad Hossein Fazel-
dc.contributor.authorHadavandi, Esmaeil-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:34:55Z-
dc.date.available2021-09-11T15:34:55Z-
dc.date.issued2012en_US
dc.identifier.issn0884-8173-
dc.identifier.issn1098-111X-
dc.identifier.urihttps://doi.org/10.1002/int.21554-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6091-
dc.description.abstractStock price prediction is an important task for most investors and professional analysts. However, it is a tough problem because of the uncertainties involved in prices. This paper presents a four-layer fuzzy multiagent system (FMAS) architecture to develop a hybrid artificial intelligence model based on the coordination of intelligent agents performing data preprocessing and function approximation tasks for next-day stock price prediction. The first layer is dedicated to metadata creation. The second layer is aimed at data preprocessing using stepwise regression analysis and self-organizing map neural network clustering for modularizing prediction problems. The third layer is aimed at model building for each cluster using genetic fuzzy systems and evaluating built models to choose the best evolved fuzzy system for each cluster. Finally, the fourth layer provides model analysis and knowledge presentation. The capability of FMAS is evaluated by applying it on stock price data gathered from IT and airline sectors and comparing the outcomes with the results of other methods. The results show that FMAS outperforms all previous methods, so it can be considered as a suitable tool for stock price prediction problems. (c) 2012 Wiley Periodicals, Inc.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofInternational Journal of Intelligent Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleA Hybrid Fuzzy Intelligent Agent-Based System for Stock Price Predictionen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume27en_US
dc.identifier.issue11en_US
dc.identifier.startpage947en_US
dc.identifier.endpage969en_US
dc.identifier.wosWOS:000308717300001en_US
dc.identifier.scopus2-s2.0-84866414145en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1002/int.21554-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

35
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

40
checked on Aug 31, 2024

Page view(s)

70
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.