Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6092
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHajizadeh, E.-
dc.contributor.authorSeifi, A.-
dc.contributor.authorZarandi, M. N. Fazel-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:34:55Z-
dc.date.available2021-09-11T15:34:55Z-
dc.date.issued2012-
dc.identifier.citation1st International Symposium on Computing in Science and Engineering -- JUN 03-05, 2010 -- Kusadasi, TURKEYen_US
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2011.07.033-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6092-
dc.description.abstractForecasting volatility is an essential step in many financial decision makings. GARCH family of models has been extensively used in finance and economics, particularly for estimating volatility. The motivation of this study is to enhance the ability of GARCH models in forecasting the return volatility. We propose two hybrid models based on EGARCH and Artificial Neural Networks to forecast the volatility of S&P 500 index. The estimates of volatility obtained by an EGARCH model are fed forward to a Neural Network. The input to the first hybrid model is complemented by historical values of other explanatory variables. The second hybrid model takes as inputs both series of the simulated data and explanatory variables. The forecasts obtained by each of those hybrid models have been compared with those of EGARCH model in terms of closeness to the realized volatility. The computational results demonstrate that the second hybrid model provides better volatility forecasts. (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectVolatilityen_US
dc.subjectGARCH modelsen_US
dc.subjectSimulated seriesen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectRealized volatilityen_US
dc.titleA Hybrid Modeling Approach for Forecasting the Volatility of S&p 500 Index Returnen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.identifier.volume39en_US
dc.identifier.issue1en_US
dc.identifier.startpage431en_US
dc.identifier.endpage436en_US
dc.identifier.wosWOS:000296214900046-
dc.identifier.scopus2-s2.0-81855167117-
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1016/j.eswa.2011.07.033-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference1st International Symposium on Computing in Science and Engineeringen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

75
checked on Jan 18, 2025

WEB OF SCIENCETM
Citations

97
checked on Aug 31, 2024

Page view(s)

60
checked on Jan 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.