Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6113
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZarandi, Mohammad Hossein Fazel-
dc.contributor.authorZarinbal, M.-
dc.contributor.authorGhanbari, N.-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:34:58Z-
dc.date.available2021-09-11T15:34:58Z-
dc.date.issued2013en_US
dc.identifier.issn0020-0255-
dc.identifier.issn1872-6291-
dc.identifier.urihttps://doi.org/10.1016/j.ins.2012.08.002-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6113-
dc.description.abstractIn this paper, a new fuzzy functions (FFs) model is presented and its main parameters are optimized with simulated annealing (SA) approach. For this purpose, a new hybrid clustering algorithm for model structure identification is proposed. This model is based on hybridization of extended version of possibilistic c-mean (PCM) clustering with mahalonobise distance measure and a noise rejection method. In this research, Multivariate Adaptive Regression Splines (MARS) is applied for selecting variables and approximating fuzzy functions in each cluster. A metaheuristic Imperialist Competitive Algorithm (ICA) is used to initialize the clustering parameters. The proposed FFs model is validated using two well-known standard artificial datasets and two real datasets, Tehran stock exchange and ozone level. It is shown that using the proposed FFs model can lead to promising results. (C) 2012 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofInformation Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy functionsen_US
dc.subjectNoise-rejection possibilistic clusteringen_US
dc.subjectMultivariate adaptive regression splinesen_US
dc.subjectSimulated annealingen_US
dc.subjectForecastingen_US
dc.titleA New Fuzzy Functions Model Tuned by Hybridizing Imperialist Competitive Algorithm and Simulated Annealing Application: Stock Price Predictionen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume222en_US
dc.identifier.startpage213en_US
dc.identifier.endpage228en_US
dc.identifier.wosWOS:000313774200015en_US
dc.identifier.scopus2-s2.0-84870062990en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1016/j.ins.2012.08.002-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

38
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

41
checked on Aug 31, 2024

Page view(s)

52
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.