Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6149
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKülcü, Sercan-
dc.contributor.authorDoğdu, Erdoğan-
dc.date.accessioned2021-09-11T15:35:05Z-
dc.date.available2021-09-11T15:35:05Z-
dc.date.issued2016-
dc.identifier.citation10th IEEE International Conference on Semantic Computing (ICSC) -- FEB 04-06, 2016 -- Laguna Hills, CAen_US
dc.identifier.isbn978-1-5090-0662-5-
dc.identifier.issn2325-6516-
dc.identifier.urihttps://doi.org/10.1109/ICSC.2016.66-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6149-
dc.description.abstractWe present a framework for sentiment analysis on tweets related to news items. Given a set of tweets and news items, our framework classifies tweets as positive or negative and links them to the related news items. For the classification of tweets we use three of the most used machine learning methods, namely Naive Bayes, Complementary Naive Bayes, and Logistic Regression, and for linking tweets to news items, Natural Language Processing (NLP) techniques are used, including Zemberek NLP library for stemming and morphological analysis and then bag-of-words method for mapping. To test the framework, we collected 6000 tweets and labeled them manually to build a classifier for sentiment analysis. We considered tweets and news in Turkish language only in this work. Our results show that Naive Bayes performs well on classifying tweets in Turkish.en_US
dc.description.sponsorshipIEEE, IEEE Comp Socen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2016 IEEE Tenth International Conference On Semantic Computing (Icsc)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleA Scalable Approach for Sentiment Analysis of Turkish Tweets and Linking Tweets To Newsen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesIEEE International Conference on Semantic Computing-
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage470en_US
dc.identifier.endpage475en_US
dc.identifier.wosWOS:000382051400091-
dc.identifier.scopus2-s2.0-84968813330-
dc.institutionauthorDoğdu, Erdoğan-
dc.identifier.doi10.1109/ICSC.2016.66-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference10th IEEE International Conference on Semantic Computing (ICSC)en_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

2
checked on Aug 31, 2024

Page view(s)

78
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.