Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6149
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Külcü, Sercan | - |
dc.contributor.author | Doğdu, Erdoğan | - |
dc.date.accessioned | 2021-09-11T15:35:05Z | - |
dc.date.available | 2021-09-11T15:35:05Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | 10th IEEE International Conference on Semantic Computing (ICSC) -- FEB 04-06, 2016 -- Laguna Hills, CA | en_US |
dc.identifier.isbn | 978-1-5090-0662-5 | - |
dc.identifier.issn | 2325-6516 | - |
dc.identifier.uri | https://doi.org/10.1109/ICSC.2016.66 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6149 | - |
dc.description.abstract | We present a framework for sentiment analysis on tweets related to news items. Given a set of tweets and news items, our framework classifies tweets as positive or negative and links them to the related news items. For the classification of tweets we use three of the most used machine learning methods, namely Naive Bayes, Complementary Naive Bayes, and Logistic Regression, and for linking tweets to news items, Natural Language Processing (NLP) techniques are used, including Zemberek NLP library for stemming and morphological analysis and then bag-of-words method for mapping. To test the framework, we collected 6000 tweets and labeled them manually to build a classifier for sentiment analysis. We considered tweets and news in Turkish language only in this work. Our results show that Naive Bayes performs well on classifying tweets in Turkish. | en_US |
dc.description.sponsorship | IEEE, IEEE Comp Soc | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2016 IEEE Tenth International Conference On Semantic Computing (Icsc) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | [No Keywords] | en_US |
dc.title | A Scalable Approach for Sentiment Analysis of Turkish Tweets and Linking Tweets To News | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | IEEE International Conference on Semantic Computing | - |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.identifier.startpage | 470 | en_US |
dc.identifier.endpage | 475 | en_US |
dc.identifier.wos | WOS:000382051400091 | - |
dc.identifier.scopus | 2-s2.0-84968813330 | - |
dc.institutionauthor | Doğdu, Erdoğan | - |
dc.identifier.doi | 10.1109/ICSC.2016.66 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | 10th IEEE International Conference on Semantic Computing (ICSC) | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
7
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
2
checked on Aug 31, 2024
Page view(s)
78
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.