Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6171
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKülcü, Sercan-
dc.contributor.authorDoğdu, Erdoğan-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2021-09-11T15:35:09Z-
dc.date.available2021-09-11T15:35:09Z-
dc.date.issued2016en_US
dc.identifier.citation4th IEEE International Conference on Big Data (Big Data) -- DEC 05-08, 2016 -- Washington, DCen_US
dc.identifier.isbn978-1-4673-9005-7-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6171-
dc.description.abstractSocial Network Analysis (SNA) has become a very important and increasingly popular topic among researchers in recent years especially after emerging Semantic Web and Big Data technologies. Social networking services such as Facebook, Google+, Twitter, etc. provide large amounts of data that can be used for social network analysis by researchers. Semantic Web technology plays an important role for collecting, merging, and aggregating social network data from heterogeneous sources more easily, robustly and in an interoperable manner. Today, data scientists use several different frameworks for querying, integrating and analyzing datasets located at different sources. Meanwhile, most of the big social data is in unstructured or semi-structured format. Big data architectures allow researchers to analyze unstructured data in a time and cost-efficient way. New approaches for SNA are needed to combine Semantic Web and Big Data technologies in order to utilize and add capabilities to existing solutions. To be able to analyze large scale social networks, algorithms should have scalable designs in order to benefit from the emerging Big Data technologies. This survey focuses on recently developed systems for SNA and summarizes the state-of-the-art technologies used by them and points out to future research directions.en_US
dc.description.sponsorshipIEEE, IEEE Comp Soc, Natl Sci Fdn, Cisco, Huawei, Elsevier, Navigant, Johns Hopkins Whiting Sch Engnen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2016 IEEE International Conference On Big Data (Big Data)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSocial network analysisen_US
dc.subjectsemantic weben_US
dc.subjectbig bataen_US
dc.titleA Survey on Semantic Web and Big Data Technologies for Social Network Analysisen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage1768en_US
dc.identifier.endpage1777en_US
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000399115001099en_US
dc.identifier.scopus2-s2.0-85015211124en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference4th IEEE International Conference on Big Data (Big Data)en_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

15
checked on Aug 31, 2024

Page view(s)

126
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.