Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6175
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUçar, Mustafa-
dc.contributor.authorBayram, İlknur-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2021-09-11T15:35:10Z-
dc.date.available2021-09-11T15:35:10Z-
dc.date.issued2013en_US
dc.identifier.citationComplex Adaptive Systems Conference -- NOV 13-15, 2013 -- Baltimore, MDen_US
dc.identifier.issn1877-0509-
dc.identifier.urihttps://doi.org/10.1016/j.procs.2013.09.305-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6175-
dc.description.abstractIn this study, a two-level cascade stock trading model is proposed. In the first level, the buy/sell signals are created by optimizing the RSI technical indicator parameters with evolutionary computation techniques. Then using the selected parameters, in the second level actual trading is performed using an optimized covered call strategy. Again, the optimization is implemented with evolutionary computation. In this particular study, genetic algorithms (GA) and Particle Swarm Optimization (PSO) are chosen as the soft computing methods for optimization. Historical end-of-day close values and options data for the S&P 500 Spider ETF (SPY) and 4 other ETFs (EWZ, XLE, IWM, XLF) between years 2005-2009 are used. The system is trained using the data between 2005 and 2008: the testing is done with 2009 data. The results indicate that the proposed model outperformed not only the buy and hold strategy, but also buying and selling the ETF alone without the options. In future work different stock/ETF data and different combined options strategies will be included in the model to identify performances of different techniques. (C) 2013 The Authors. Published by Elsevier B.V.en_US
dc.description.sponsorshipMissouri Univ Sci & Technol, Engn Management & Syst Engn Dept, Lockheed Martin, Drexel Univen_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofComplex Adaptive Systems: Emerging Technologies For Evolving Systems: Socio-Technical, Cyber And Big Dataen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectStock tradingen_US
dc.subjecttechnical analysisen_US
dc.subjectRSIen_US
dc.subjectoptions tradingen_US
dc.subjectcovered callen_US
dc.subjectgenetic algorithms (GA)en_US
dc.subjectparticle swarm optimization (PSO)en_US
dc.subjectevolutionary computationen_US
dc.titleA Two-Level Cascade Evolutionary Computation Based Covered Call Trading Modelen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesProcedia Computer Scienceen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume20en_US
dc.identifier.startpage472en_US
dc.identifier.endpage477en_US
dc.authorid0000-0001-7998-5735-
dc.authorid0000-0003-0382-5537-
dc.identifier.wosWOS:000342564700071en_US
dc.identifier.scopus2-s2.0-84896978648en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1016/j.procs.2013.09.305-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceComplex Adaptive Systems Conferenceen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

4
checked on Aug 31, 2024

Page view(s)

82
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.